Simplified method of construction of a complete set of MOLS

Prof. G. C. Bhimani¹ & Manisha H. Dave²

¹Department of Statistics,Saurashtra University, Rajkot (Gujarat); ²M.K Amin Arts and Science college and college of commerce, Padra, The Maharaja Sayajirao University, Baroda (Gujarat).

Received: May 13, 2018

Accepted: June 19, 2018

ABSTRACT A complete set of MOLS(s) exists if s is p^n ; p is a prime number and $n \ge 1$ is an integer. Various methods of construction of a complete set of MOLS(s) have been discussed earlier. Here we discuss the algebraic method of construction of a complete set of MOLS(s) and its simplification with illustration.

Keywords: Prime number, Complete set of MOLS, Algebraic method, Primitive root, Element, Index.

Introduction

We know that a complete set of MOLS(s) exists if s is p^n ; p is a prime number and $n \ge 1$ is an integer. To construct a complete set of MOLS(s) various methods are given by researchers. Here we discuss the algebraic method of construction of a complete set of MOLS(s) and its simplification with illustration. We also illustrate the saving in calculations and time due to the simplification.

Algebraic method

Let $s=p^n$; p is a prime number and $n \ge 1$ is an integer.

Obtain elements of GF (s):

a). Let n = 1 i.e. s is a prime number. Then

A complete set of incongruent residue mod p constitute elements of GF(s).

Hence elements of GF(s) are 0, 1, 2 ... s-1. s We write them in standard order as

 $\alpha_0=0$, $\alpha_1=1$, $\alpha_2=x$, $\alpha_3=x^2$, ..., $\alpha_{s-1}=x^{s-2}$, where x is a primitive root (p.r.) of GF (s).

Note that $x^{s-1}=1$.

b). Let n > 1 i.e. s is a prime power. Then

A complete set of incongruent residue mod minimum function of GF (p^n) constitute elements of GF($s=p^n$). Write them in a standard order as $\alpha_0=0$, $\alpha_1=1$, $\alpha_2=x$, $\alpha_3=x^2$, ..., $\alpha_{s-1}=x^{s-2}$, where x is a primitive root (p.r.) of GF

(s). Note that $x^{s-1}=1$.

Now denote row and column numbers of an $s \times s$ square as 0, 1, 2, ... s-1. There are two different approaches for the algebraic methods which are slightly different. We denote them as approaches A and B. **Approach A**.

 $(r,t)^{th}$ cell element of an s × s square L_i is **filled up by the index of the element/or the element** $\alpha_i \alpha_r + \alpha_t$, i= 1, 2, ... s-1; r,t = 0, 1, 2, ..., s-1.

Approach B.

```
(r,t)<sup>th</sup> cell element of an s × s square L<sub>i</sub> is filled up by the indexof the element/or by the element
\alpha_r + \alpha_i \alpha_t, i= 1, 2, ... s-1; r,t = 0, 1, 2, ..., s-1.
```

By these approaches, to obtain a complete set of MOLS(s) we have to obtain $s^2(s-1)$ cell elements of s-1 latin squares. The task is laborious and time consuming. Therefore we need simplification leading to reduction in time in the construction of a complete set of MOLS(s).

Simplification in the algebraic method

1. Consider (r,t)th cell element of L₁ by methods A and B.

By Approach A, $(r,t)^{th}$ cell element of L₁, $= \alpha_1 \alpha_r + \alpha_t$ $= \alpha_r + \alpha_t \quad (\because \alpha_1 = 1) \quad (1)$ By Approach B, $(r,t)^{th}$ cell element of L₁, $= \alpha_r + \alpha_1 \alpha_t$ $= \alpha_r + \alpha_t \quad (\because \alpha_1 = 1) \quad (2)$ From (1) and (2) it is clear that by both approaches A and P, obtain

From (1) and (2), it is clear that by both approaches A and B, obtained $(r,t)^{th}$ cell element of L_1 is same for \forall r and t.

 \Rightarrow Approaches A and B give us same L₁.

2. Consider (r,t)th cell element of ith LS L_i of a complete set of MOLS of order s.

(r,t)th cell element of L_i by Approach A $= \alpha_1 \alpha_r + \alpha_t$ $= x^{i-1} x^{r-1} + x^{t-1}$ $= x^{i} x^{r-2} + x^{t-1}$ $= \alpha_{i+1} \alpha_{r-1} + \alpha_t$ = $(r-1,t)^{\text{th}}$ cell element of L_i $\Rightarrow \forall$ t, rth row of L_i is same as (r-1)th row of L_{i+1} (3)

Consider (1,t)th cell element of ith LS L_i of a complete set of MOLS of order s. (1,t)th cell element of L₁

 $= \alpha_i \alpha_1 + \alpha_t$ $= x^{i-1} \cdot 1 + x^{t-1}$ $= x^{i-1} \cdot x^{s-1} + x^{t-1}$ x being p.r. of GF (s) $= \mathbf{x}^{i} \cdot \mathbf{x}^{s-2} + \mathbf{x}^{t-1}$ $= \alpha_{i+1} \alpha_{s-1} + \alpha_t$ = (s-1,t)th cell element of L_{i+1} (4)

 $\Rightarrow \forall$ t, 1st row of L_i is same as last row of L_{i+1}.

From (3) and (4), it is clear that

- Keep zeroth row fixed, i.
- ii. r^{th} row of $L_{i} = (r-1)^{th}$ row of L_{i+1}
- 1^{st} row of $L_i = (s-1)^{th}$ row of L_{i+1} iii.

Summary. (a). Keep zeroth row fix. Now as proved above, by cyclic permutation of rows of L_i , we get L_{i+1} , i = 1,2,...,s-1.

Thus, having obtained L_1 , we can easily obtain a complete set of MOLS by cyclic permutation of rows as under:

L₂ from L₁ L_3 from L_2 L₄ from L₃ Ls-1 from Ls-2 (b). OR we can obtain L_2 , L_3 , ... L_{s-1} from L_1 as follows:

Having obtained L_1 , where zeroth row is in natural order; L_i can obtained by i - step cyclic permutation of rows of L_1 , i= 2, 3, ... s-1. Note that zeroth row of L_i is same as L_1 .

(c). This method is applicable to both LS's obtained by filling index of the element or by filing the element.

Note that by above simplification we need to obtain only L_1 , that is we need to obtain only s^2 cell elements instead $s^{2}(s-1)$ entries. Thus we save labour and time of obtaining $s^{2}(s-1) - s^{2} = s^{2}(s-2)$ cell elements. If s = 9, then we save time and labour of obtaining 567 cell elements, a tremendous reduction.

llustrations Approach A: s=9=3². GF(3) = 0.1.2. Minimum function of GF (9) is $x^2 + x + 2$. GF (9): $\alpha_0=0$, $\alpha_1=1$, $\alpha_2=x$, $\alpha_3=x^2=2x+1$, $\alpha_4=x^3=2x+2$, $\alpha_5=x^4=2$, $\alpha_6=x^5=2x$, $\alpha_7=x^6=x+2$, $\alpha_8=x^7=x+1$

Illustation 1.

Let $(r,t)^{th}$ cell element of an s × s square L₁ is filled up by the element $\alpha_1 \alpha_r + \alpha_t$, i= 1, 2, ... s-1; r,t = 0, 1, 2, ..., s-1.

	α 0=0	α 1=1	α ₂ =x	$\alpha_3 = x^2 = 2x + 1$	$\alpha_4 = x^3$ =2x+2	α ₅ =x ⁴ =2	$\alpha_6 = x^5 = 2x$	$\alpha_7 = x^6 = x+2$	α ₈ =x ⁷ = x+1
α₀=0	0	1	х	2x+1	2x+1	2	2x	x+2	x+1
α1=1	1	2	x+1	2x+2	2x	0	2x+1	х	x+2
<i>α</i> ₂ =x	Х	x+1	2x	1	2	x+2	0	2x+2	2x+1
$\alpha_3 = x^2 = 2x + 1$	2x+1	2x+2	1	x+2	Х	2x	x+1	0	2
$\alpha_4 = x^3$ =2x+2	2x+2	2x	2	х	x+1	2x+1	x+2	1	0
$\alpha_5 = x^4 = 2$	2	0	x+2	2x	2x+1	1	2x+2	x+1	х
$\alpha_6 = x^5 = 2x$	2x	2x+1	0	x+1	x+2	2x+2	Х	2	1
$\alpha_7 = x^6 = x + 2$	x+2	х	2x+2	0	1	x+1	2	2x+1	2x
α ₈ =x ⁷ =x+1	x+1	x+2	2x+1	2	0	Х	1	2x	2x+2

Illustration 2

Let $(r,t)^{th}$ cell element of an s × s square L₁ is filled up by the index of $\alpha_1\alpha_r + \alpha_t$, i= 1, 2, ... s-1; r,t = 0, 1, 2, ..., s-1.

L ₁ . Index filling										
	α ₀ =0	α 1=1	α ₂ =x	$\alpha_3 = x^2 = 2x + 1$	$\alpha_4 = x^3$ =2x+2	α ₅ =x ⁴ =2	$\alpha_6=$ x ⁵ =2x	$\alpha_7 = x^6 = x+2$	α ₈ =x ⁷ = x+1	
α₀=0	0	1	2	3	4	5	6	7	8	
α1=1	1	5	8	4	6	0	3	2	7	
<i>α</i> ₂ =x	2	8	6	1	5	7	0	4	3	
$\alpha_3 = x^2 = 2x + 1$	3	4	1	7	2	6	8	0	5	
$\alpha_4 = x^3 = 2x + 2$	4	6	5	2	8	3	7	1	0	
$\alpha_5 = x^4 = 2$	5	0	7	6	3	1	4	8	2	
$\alpha_6 = x^5 = 2x$	6	3	0	8	7	4	2	5	1	
α ₇ =x ⁶ =x+2	7	2	4	0	1	8	5	3	6	
α ₈ =x ⁷ =x+1	8	7	3	5	0	2	1	6	4	

From $L_1(9)$ obtained above either by filling the element or the index of the element, the rest 8 LSs from a complete set can be obtained by the simplification methods discussed above . thus there is saving of time and labour of obtaining 81 x 7 = 567 = s²(s-2).

In Approach B, there is column permutation instead roe permutation.

References

- 1. Damaraju Raghavarao, 1988. Constructions and Combinatorial Problems in Design of Experiments (corrected reprint of the 1971 John Wiley Series in Probability and mathematical statistics). New York: Dover. ISBN 0-486-65685-3. MR 1102899.
- 2. Dwivedi Lokesh, Mutually orthogonal latin squares and their uses. I.A.S.R.I., Library Avenue, New Delhi