Simplified method of construction of a complete set of MOLS

Prof. G. C. Bhimani1 & Manisha H. Dave2

1Department of Statistics, Saurashtra University, Rajkot (Gujarat);
2M.K Amin Arts and Science college and college of commerce, Padra, The Maharaja Sayajirao University, Baroda (Gujarat).

Received: May 13, 2018
Accepted: June 19, 2018

ABSTRACT

A complete set of MOLS(s) exists if \(s = p^n \); \(p \) is a prime number and \(n \geq 1 \) is an integer. Various methods of construction of a complete set of MOLS(s) have been discussed earlier. Here we discuss the algebraic method of construction of a complete set of MOLS(s) and its simplification with illustration.

Keywords: Prime number, Complete set of MOLS, Algebraic method, Primitive root, Element, Index.

Introduction

We know that a complete set of MOLS(s) exists if \(s = p^n \); \(p \) is a prime number and \(n \geq 1 \) is an integer. To construct a complete set of MOLS(s) various methods are given by researchers. Here we discuss the algebraic method of construction of a complete set of MOLS(s) and its simplification with illustration. We also illustrate the saving in calculations and time due to the simplification.

Algebraic method

Let \(s = p^n \); \(p \) is a prime number and \(n \geq 1 \) is an integer. Obtain elements of GF (s):

a). Let \(n = 1 \) i.e. \(s \) is a prime number. Then a complete set of incongruent residue mod \(p \) constitute elements of GF(s). Hence elements of GF(s) are \(0, 1, 2 \ldots s-1 \). We write them in standard order as \(\alpha_0 = 0, \alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2, \ldots, \alpha_{s-1} = x^{s-2} \), where \(x \) is a primitive root (p.r.) of GF(s). Note that \(x^{s-1} = 1 \).

b). Let \(n > 1 \) i.e. \(s \) is a prime power. Then a complete set of incongruent residue mod minimum function of GF (\(p^n \)) constitute elements of GF(s = \(p^n \)). Write them in a standard order as \(\alpha_0 = 0, \alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2, \ldots, \alpha_{s-1} = x^{s-2} \), where \(x \) is a primitive root (p.r.) of GF(s). Note that \(x^{s-1} = 1 \).

Now denote row and column numbers of an \(s \times s \) square as \(0, 1, 2, \ldots, s-1 \). There are two different approaches for the algebraic methods which are slightly different. We denote them as approaches A and B.

Approach A.

\((r,t)th \) cell element of an \(s \times s \) square \(L_i \) is filled up by the index of the element/or the element \(\alpha_i \alpha_r + \alpha_t \), \(i = 1, 2, \ldots, s-1 \); \(r, t = 0, 1, 2, \ldots, s-1 \).

Approach B.

\((r,t)th \) cell element of an \(s \times s \) square \(L_i \) is filled up by the index of the element/or by the element \(\alpha_r + \alpha_t \), \(i = 1, 2, \ldots, s-1 \); \(r, t = 0, 1, 2, \ldots, s-1 \).

By these approaches, to obtain a complete set of MOLS(s) we have to obtain \(s^2 \text{(s-1)} \) cell elements of \(s-1 \) latin squares. The task is laborious and time consuming. Therefore we need simplification leading to reduction in time in the construction of a complete set of MOLS(s).

Simplification in the algebraic method

1. Consider \((r,t)th \) cell element of \(L_1 \) by methods A and B.

 By Approach A, \((r,t)th \) cell element of \(L_1 \),
 \[\alpha_0 \alpha_r + \alpha_t \] \(\vdots \alpha_1 = 1 \) \hspace{1cm} (1)

 By Approach B, \((r,t)th \) cell element of \(L_1 \),
 \[\alpha_r + \alpha_t \] \(\vdots \alpha_1 = 1 \) \hspace{1cm} (2)

 From (1) and (2), it is clear that by both approaches A and B, obtained \((r,t)th \) cell element of \(L_1 \) is same for \(\forall r \text{ and } t \).
⇒ Approaches A and B give us same L_1.

2. Consider $(r,t)^{th}$ cell element of i^{th} LS L_i of a complete set of MOLS of order s.

$(r,t)^{th}$ cell element of L_i by Approach A

\[
\begin{align*}
&= \alpha_{i} \alpha_{r} + \alpha_{t} \\
&= x^{i-1} x^{r-1} + x^{t-1} \\
&= x^{i-1} x^{r-2} + x^{t-1} \\
&= \alpha_{i+1} \alpha_{r-1} + \alpha_{t} \\
&= (r-1,t)^{th} \text{ cell element of } L_i
\end{align*}
\]

⇒ $\forall t$, r^{th} row of L_i is same as $(r-1)^{th}$ row of L_{i+1}

(3)

Consider $(1,t)^{th}$ cell element of i^{th} LS L_i of a complete set of MOLS of order s.

$(1,t)^{th}$ cell element of L_1

\[
\begin{align*}
&= \alpha_{i} \alpha_{1} + \alpha_{t} \\
&= x^{i-1} \cdot 1 + x^{t-1} \\
&= x^{i-1} x^{s-1} + x^{t-1} \\
&= x^{i-1} x^{s-2} + x^{t-1} \\
&= \alpha_{i+1} \alpha_{s-1} + \alpha_{t} \\
&= (s-1,t)^{th} \text{ cell element of } L_{i+1}
\end{align*}
\]

⇒ $\forall t$, 1^{st} row of L_i is same as last row of L_{i+1}.

(4)

From (3) and (4), it is clear that

i. Keep zeroth row fixed,

ii. r^{th} row of $L_i = (r-1)^{th}$ row of L_{i+1}

iii. 1^{st} row of $L_i = (s-1)^{th}$ row of L_{i+1}

Summary. (a) Keep zeroth row fix. Now as proved above, by cyclic permutation of rows of L_i, we get $L_{i+1}, i = 1, 2, ..., s-1$.

Thus, having obtained L_1, we can easily obtain a complete set of MOLS by cyclic permutation of rows as under:

- L_2 from L_1
- L_3 from L_2
- L_4 from L_3
- ...
- L_{s-1} from L_{s-2}

(b) OR we can obtain $L_2, L_3, ... L_{s-1}$ from L_1 as follows:

Having obtained L_i, where zeroth row is in natural order, L_i can obtained by i-step cyclic permutation of rows of L_i, $i = 2, 3, ..., s-1$. Note that zeroth row of L_i is same as L_1.

(c) This method is applicable to both LS’s obtained by filling index of the element or by filing the element.

Note that by above simplification we need to obtain only L_1, that is we need to obtain only s^2 cell elements instead of $s^2(s-1)$ entries. Thus we save labour and time of obtaining $s^2(s-1) - s^2 = s^2(s-2)$ cell elements. If $s = 9$, then we save time and labour of obtaining 567 cell elements, a tremendous reduction.

Illustrations

Approach A: $s=9=3^2$.

$GF(3) = 0, 1, 2$.

Minimum function of $GF (9)$ is $x^2 + x + 2$.

$GF (9) : \alpha_0=0, \alpha_1=1, \alpha_2=x, \alpha_3=x^2=2x+1, \alpha_4=x^3=2x+2, \alpha_5=x^4=2, \alpha_6=x^5=x+2, \alpha_7=x^6=x+2, \alpha_8=x^7=x+1$

Illustration 1.

Let $(r,t)^{th}$ cell element of an $s \times s$ square L_1 is filled up by the element

$\alpha_{i} \cdot \alpha_{r} + \alpha_{t}$, $i= 1, 2, ... s-1$; $r,t = 0, 1, 2, ..., s-1$.

224 | IJRAR- International Journal of Research and Analytical Reviews Research Paper
Illustration 2

Let \((r,t)\)th cell element of an \(s \times s\) square \(L_1\) is filled up by the index of \(\alpha_0 \alpha_i \alpha_i + \alpha_r \alpha_t\), \(i = 1, 2, \ldots, s-1\); \(r,t = 0, 1, 2, \ldots, s-1\).

From \(L_1(9)\) obtained above either by filling the element or the index of the element, the rest 8 LSs from a complete set can be obtained by the simplification methods discussed above. Thus there is saving of time and labour of obtaining \(81 \times 7 = 567 = s^2(s-2)\).

In Approach B, there is column permutation instead row permutation.

References
