FORCED DEGRADATION STUDY: AN OVERVIEW

Asha S. Joshi1* & Archana K. Nadre2

1*Assistant Professor, Department of Pharmaceutical Chemistry, Shreeyash Institute Of Pharmaceutical Education And Research, Aurangabad - 431 002, Maharashtra, India.
2Assistant Professor, Department of Pharmaceutics, Shreeyash Institute Of Pharmaceutical Education And Research, Aurangabad – 431 002, Maharashtra, India.

Received: May 30, 2018 Accepted: July 18, 2018

ABSTRACT Stability study is the organized approach towards drug development process. This article provides an summary of types of stability studies, strategies relevant to designing stability indicating HPLC method development for drug substance and objective of forced degradation study. Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product stability, and to provide information about degradation pathways and degradation products. Practical recommendations are provided for developing forced degradation protocol. The ability to differentiate the active ingredient from closely related process and degradative impurities is usually the key requirement for stability indicating methods.

Keywords: Stability study, Forced degradation study, validation, HPLC

INTRODUCTION

Stability:

Stability is defined as the capacity of a drug substance or drug product to remain within established specifications to maintain its identity, strength, quality, and purity throughout the re-test or expiration dating periods. Stability testing of an active substance or finished product provides proof on how the quality of a drug substance or drug product varies with time 1. All stability study guidelines are mentioned in ICH, FDA, WHO and EMEA2. With the arrival of International Conference on Harmonization (ICH) guidelines, the condition of establishment of stability-indicating assay method (SIAM) has become more clearly mandated3. According to FDA guidance document a stability-indicating method is "a validated quantitative analytical procedure that can detect the changes with time in the relevant properties of the drug substance and drug product"4. A stability-indicating method accurately measures the active ingredients without interference from degradation products, process impurities, excipients or other potential impurities5.

High performance liquid chromatography (HPLC) is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect and quantify any drug-related impurities that may be introduced during synthesis6.

Importance of stability testing

The most important reason for stability testing is the concern for the safety of the patient suffering from the disease for which the products is intended. Apart from degradation of the unstable product into toxic decomposition products, loss of activity up to a level of 85% of that claimed on the label may lead to failure of the therapy resulting in death e.g. nitroglycerine tablets for angina and cardiac arrest. Second important concern is to protect the reputation of the manufacturer by assuring that the product will retain fitness for use with respect to all functionally relevant attributes for as long as they are on the market. Other benefits of stability studies at the developmental stage or of the marketed products are to provide a database that may be of value in selection of satisfactory formulations, excipients and container closure systems for development of a new product, to determine shelf life and storage conditions for development of a new product, preparation of registration dossier, to confirm the claimed shelf life for the registration dossier and to verify that no changes have been introduced in the formulation or manufacturing process that can adversely affect the stability of the product7.
Scheme 1- An illustrative flowchart describing various stress conditions used for degradation of drug substance and drug product.

Types of drug stability studies

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Study</th>
<th>Storage condition</th>
<th>Minimum time period Covered by data at Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Long term</td>
<td>25°C ± 2°C/ 60% RH ± 5% RH or 30°C ± 2°C/65% RH ± 5% RH</td>
<td>12 months</td>
</tr>
<tr>
<td>2.</td>
<td>Intermediate</td>
<td>30°C ± 2°C/65% RH ± 5% RH</td>
<td>6 months</td>
</tr>
<tr>
<td>3.</td>
<td>Accelerated</td>
<td>40°C ± 2°C/75% RH ± 5% RH</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Stability indicating method development steps:

1. **Understand the physiochemical properties and chemistry of the drug**
   The information of physicochemical properties of the APIs such as dissociation constant, partition coefficients, fluorescent properties, chromatographic nature, oxidation-reduction potentials, Spectrophotometric properties is important for setting the experimental conditions during the stability studies of the drug.

2. **Set up preliminary HPLC condition**
   Literature search and officials or non-officials method usually used for the selection of preliminary experimental conditions for the stability studies. Experimental conditions are selected according to the properties of the API's.

3. **Sample preparation for method development**
   Stability indicating methods are developed by stressing the API under accelerated condition to degrade API up to 5-10% which is analysed by using the suitable preliminary HPLC condition with suitable detector.

4. **Develop Stability indicating chromatographic conditions**
   The common separation variable includes flow mode, solvent types, mobile phase, pH, column type and temperature.

5. **Method of Optimization**
   Experimental condition should be optimized to get desired separation and sensitivity after getting appropriate separation. Experimental condition should be achieved through the systematic examination on parameter including PH (ionic), mobile phase component and ratio, gradient, flow rate, temperature, injections volume and diluents sample type.

6. **Validation of Analytical Method**
   Analytical methods have to be validated according to the ICH/USP guidelines. It is necessary to isolate, identify, characterize, and qualify degradation products if they are above the identification threshold (usually 0.1%). In validation accuracy, precision, linearity, range, specificity, limit of detection, limit of quantitation, ruggedness, and robustness of the method are done.
### Forced degradation studies in stability-indicating method development:

Forced degradation is also referred as stress testing and it demonstrates specificity when developing stability indicating methods, especially when little is known about potential degradation products\(^1\). It is defined as the stability testing of drug substances and drug products undertaken to elucidate intrinsic stability attributes\(^13\,14\). It is an fundamental step in the design of a regulatory compliant stability program for both drug substances and products, and was formalized as a regulatory requirement in ICH Guideline Q1A in 1993\(^15\). It is a powerful tool used regularly in pharmaceutical development in order to develop stability indicating methods that lead to quality stability data\(^16\).

### Table-3 Condition generally employed for forced degradation\(^6\)

<table>
<thead>
<tr>
<th>Degradation type</th>
<th>Experimental condition</th>
<th>Storage condition</th>
<th>Sampling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis</td>
<td>Control API (no acid or base)</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>0.1N HCl</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>0.1N NaOH</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Acid Control (no API)</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Base Control (no API)</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>pH: 2,4,6,8</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td>Oxidative</td>
<td>3% H(_2)O(_2)</td>
<td>25 °C, 40 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Peroxide Control</td>
<td>25 °C, 40 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Azobisisobutyronitrile (AIBN)</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>AIBN Control</td>
<td>40 °C, 60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td>Photolytic</td>
<td>Light, 1 \times ICH</td>
<td>NA</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Light, 3 \times ICH</td>
<td>NA</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Light Control</td>
<td>NA</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td>Thermal</td>
<td>Heat Chamber</td>
<td>60 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Heat Chamber</td>
<td>60 °C / 75% RH</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Heat Chamber</td>
<td>80 °C</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Heat Chamber</td>
<td>80 °C / 75%RH</td>
<td>1,3,5 Days</td>
</tr>
<tr>
<td></td>
<td>Heat Control</td>
<td>Room temp</td>
<td>1,3,5 Days</td>
</tr>
</tbody>
</table>

### Objective of Forced Degradation Studies:

Forced degradation studies are carried out to accomplish the following purposes:

1. To establish the intrinsic stability of a drug substance in formulation\(^17\).
2. To identify the chemical properties of drug molecules\(^17\).
3. To produce more stable formulations\(^17\).
4. Generation of samples required for identification of the degradation products formed under a different stress conditions\(^15\).
5. To evaluate degradation pathways and mechanisms of a drug substance in formulation\(^15\).
6. Study of drug-drug and drug-excipient interactions in formulation\(^15\).

### CONCLUSIONS:

Stability testing is now the key routine component in the pharmaceutical development program for a new drug as well as new formulation. Stability-indicating method (SIM) is an analytical method that is capable of differentiating between the active pharmaceutical ingredients (API) from any degradation product(s) formed during the defined storage conditions during the stability testing period. Forced
Degradation studies of new drug substances and drug products are important to develop and demonstrate specificity of stability-indicating methods and to determine the degradation pathways and degradation products of the active ingredients.

ACKNOWLEDGEMENT

The authors are thankful to the Principal Dr. S. S. Khadbadi and Associate Professor Dr. U. A. Deokate, Government College of Pharmacy, Aurangabad, Maharashtra, India for providing literature survey facilities for the review article.

REFERENCES: