A note on G-Complementary to Heron Mean

Lakshmi Janardhana. R. C.1, K. M. Nagaraja2 and Narasimhan. G.3
1Research and development center Bharathiar University, Coimbatore, Department of Mathematics, Government First Grade College, Rajajinagar, Bangalore, Karnataka, India.
2Associate Professor, Department of Mathematics, J S S Academy of Technical Education, Bangalore-560 060, Karnataka, India.
3Research scholar, Research Centre, Department of Mathematics, J S S Academy of Technical Education, Bangalore, Karnataka, India.

Received: June 23, 2018
Accepted: August 01, 2018

ABSTRACT In this short note, the G-Complementary to Heron mean is introduced. A pair of double sequences in term of Heron means and G-Complementary to Heron mean are defined, their properties, monotonicity, Log-convexity and Log-concavity are discussed. Finally, as an illustration, it is justified that the new Gaussian compound mean $H_{2}(G)\otimes H_{c}$ converging faster than $H\otimes A$.

Keywords: Arithmetic mean, Geometric mean, Harmonic mean, Heron mean and G-Complementary Heron mean.

1. Introduction
For $p, q > 0$, some of the popular means well known in literature are Arithmetic mean $A(p, q) = \frac{p + q}{2}$, Geometric mean $G(p, q) = \sqrt{pq}$, Harmonic mean $H(p, q) = \frac{2pq}{p + q}$ and Heron mean $H_{e}(p, q) = \frac{p + \sqrt{pq} + q}{3}$, the various interesting results are found in [1, 5, 6-11, 15].

In [3, 12-14], researchers discussed about double sequences. As an illustration in [2], the popular iteration method called Herons’ iteration method is used to extract the square root of any positive number from Gaussian double sequences given by $p_{n+1} = H(p_{n}, q_{n})$ and $q_{n+1} = A(p_{n}, q_{n})$, also used the Archimedean double sequences $p_{n+1} = A(p_{n}, q_{n})$ and $q_{n+1} = G(p_{n+1}, q_{n})$ to get the approximate value of π. In [4], K. M. Nagaraja et al. discussed Logarithmic convexity and Logarithmic concavity of Archimedean and Gaussian double sequences. This work motivates to develop the paper.

2. Definitions and Results:
In this section, recall some definitions and lemmas which are essential for this paper.

Definition 2.1. [1, 15] A mean is put forth as a function $f = R_{+}^{2} \rightarrow R_{+}$ which has the property where $r \wedge s = \min(r, s)$ and $r \vee s = \max(r, s)$.

Definition 2.2. [15] A mean N is called P-complementary to M if it satisfies $P(M, N) = P$.

Suppose a given mean M has an unique G-complementary mean N is denoted by $N = M^{(G)} = \frac{G^{2}}{M}$

Then the G-complementary to Heron mean is defined as $H_{e}(G) = \frac{3rs}{r + \sqrt{rs} + s}$.

Definition 2.3. [3] The double sequences in terms of G-complementary to Heron mean and Heron mean are defined by

$r_{n+1} = H_{e}(G)(r_{n}, s_{n}) = \frac{3r_{n}s_{n}}{r_{n} + \sqrt{r_{n}s_{n}} + s_{n}}$ and $s_{n+1} = H_{e}(r_{n}, s_{n}) = \frac{r_{n} + \sqrt{r_{n}s_{n}} + s_{n}}{3}$.

Research Paper IJRAR-International Journal of Research and Analytical Reviews 3692
Theorem 2.1. The Heron mean and G-complementary to Heron mean are related by the inequality

\[p < H_e^{(G)}(p, q) < H_e(p, q) < q. \]

Proof: For \(p < q \), the Heron mean and G-complementary to Heron mean are given by

\[H_e(p, q) = \frac{p + \sqrt{pq} + q}{3} \quad \text{and} \quad H_e^{(G)}(p, q) = \frac{3pq}{p + \sqrt{pq} + q}. \]

Consider

\[H_e(p, q) - H_e^{(G)}(p, q) = \frac{(p + \sqrt{pq} + q)^2 - 9pq}{3(p + \sqrt{pq} + q)} = \frac{(p-q)^2 + 2\sqrt{pq}(\sqrt{p-q})^2}{3(p + \sqrt{pq} + q)} > 0. \]

Combining this inequality with lemma 2.1, gives \(p < H_e^{(G)}(p, q) < H_e(p, q) < q \).

Hence proof of Theorem 2.1 completes.

Theorem 2.2. For two distinct positive real values \(p_n < q_n \), the sequence \(p_{n+1} = H_e^{(G)}(p_n, q_n) \) is monotonically increasing and the sequence \(q_{n+1} = H_e(p_n, q_n) \) is monotonically decreasing. Also satisfy

\[\text{Min}(p, q) = p = p_0 < p_1 < \ldots < p_n < p_{n+1} < q_{n+1} < q_n < \ldots < q_1 < q_0 = q = \text{Max}(p, q). \]

Proof: Let \(p_{n+1} = H_e^{(G)}(p_n, q_n) = \frac{3p_nq_n}{p_n + \sqrt{p_nq_n} + q_n} \) and \(q_{n+1} = H_e(p_n, q_n) = \frac{p_n + \sqrt{p_nq_n} + q_n}{3} \).

Consider

\[\frac{p_{n+1}}{p_n} = \frac{3q_n}{\sqrt{p_n} + \sqrt{p_nq_n} + q_n} > \frac{3p_n}{p_n + \sqrt{p_nq_n} + p_n} = 1 \]

gives \(p_{n+1} > p_n \), which holds for all n. This proves that...
Similarly,
\[
\begin{align*}
q_{n+1} &= \sqrt[n]{q_n\left(\frac{p_n}{q_n} + \frac{q_n}{p_n}\right) + q_n} \\
&= \frac{q_n + \sqrt{p_n + q_n}}{\sqrt{3q_n}} < \frac{q_n + \sqrt{q_n + q_n}}{\sqrt{3q_n}} = 1
\end{align*}
\]

which holds for all \(n\). This proves that \(q_{n+1} < q_n\), which proves that \(q_{n+1} < q_n < q_{n-1} < \ldots < q_1 < q_0 = q = \text{Max}(p, q)\) \hspace{1cm} (2.2)

Eqs (2.1) and (2.2) lead to the proof of Theorem 2.2.

Theorem 2.3. For \(n \geq 0\), \(p_n < q_n\), the sequence \(p_{n+1} = H_e(G)(p_n, q_n)\) is Log-concave and the sequence \(q_{n+1} = H_e(p_n, q_n)\) is Log-convex.

Proof: If \(p_n < q_n\) the Heron mean G-complementary to Heron mean are given by
\[
q_{n+1} = H_e(p_n, q_n) = \frac{p_n + \sqrt{p_n q_n}}{3} \quad \text{and} \quad p_{n+1} = H_e(G)(p_n, q_n) = \frac{3p_n q_n}{p_n + \sqrt{p_n q_n} + q_n}
\]

Consider
\[
\frac{p_n}{p_{n+1}} - \frac{p_n - 1}{p_n} = \frac{\sqrt{p_n} - \sqrt{p_{n+1}}}{3q_n} > 0
\]

(\(\because \ p_n > p_{n-1} \quad \text{and} \quad -q_n > -q_{n-1}\))

So, \(p_n^2 > p_{n+1} p_{n-1}\) and hence \(p_{n+1} = H_e(G)(p_n, q_n)\) is log-concave.

Consider
\[
\frac{q_n}{q_{n+1}} - \frac{q_n - 1}{q_n} = \frac{3}{k}\left(q_n\left(\frac{p_n - 1}{q_n} + \frac{q_n - 1}{p_n}\right) - q_n\left(p_n + \sqrt{p_n q_n} + q_n\right)\right)
\]

Where \(k = \left(p_n + \sqrt{p_n q_n} + q_n\right)\left(p_n - 1\right) + \left(p_n q_n - q_n\right)\)

\[
< \frac{3}{k}\left(\sqrt{p_n - 1} - \sqrt{p_n}\right)\left(\sqrt{q_n - 1} + \sqrt{q_n}\right) \left(q_n + \sqrt{q_n q_n} - 1\right) < 0
\]

(\(\because \ p_n > p_{n-1} \quad \text{and} \quad q_n < q_{n-1}\))

So, \(q_n^2 < q_{n+1} q_{n-1}\) and hence \(q_{n+1} = H_e(p_n, q_n)\) is log-convex.

Hence the proof of Theorem 2.3 completes.

Theorem 2.4. The order \("(p_n)_{n \geq 0}\" \quad \text{and} \quad \"(q_n)_{n \geq 0}\"\) are defined in terms of G-complementary to Heron mean and Heron mean which are convergent to the common limit depicted as \(H_e(G) \otimes H_e(p, q) = G(p, q) = \sqrt{x}\).

Proof: We know that \(p_n < p_{n+1} < q_{n+1} < q_n\), \(n \geq 0\)

\[
q_{n+1} - p_{n+1} = \frac{\left(\sqrt{q_n - 1} - \sqrt{p_n}\right)^2}{3\left(p_n + \sqrt{p_n q_n} + q_n\right)} = \frac{\left(q_n - p_n\right)^2}{3}\left(p_n + \sqrt{p_n q_n} + q_n\right)
\]
Thus

\[q_n - p_n < \frac{q - p}{3} \]

Which tends to 0 as \(n \to \infty \). Hence,

\[\lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n \]

(2.4.1)

By Theorem 2.2, "\((p_n)_{n \geq 0}\) and \((q_n)_{n \geq 0}\)" are monotonically increasing and monotonically decreasing sequences respectively. Also,

\[p_{n+1}q_{n+1} = H_e^{(g)}(p_n, q_n)H_e(p_n, q_n) = \left(\frac{3p_nq_n}{p_n + \sqrt{p_nq_n} + q_n} \right) \left(\frac{p_n + \sqrt{p_nq_n} + q_n}{3} \right) = p_nq_n \]

Therefore, \(p_{n+1}q_{n+1} = p_nq_n = p_{n-1}q_{n-1} = \ldots = p_0q_0 = x \)

Where 'x' is a multiple of two positive real numbers.

This implies that \(\lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n = x \)

(2.4.2)

By equations (2.4.1) and (2.4.2), gives \(\lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n = \sqrt{x} \)

Therefore the sequences "\((p_n)_{n \geq 0}\) and \((q_n)_{n \geq 0}\)" are convergent to a common limit \(\sqrt{x} \).

Hence the proof of Theorem 2.4 completes.

3. Application to Extracting Square Root

In (12), authors discussed Herons method of extracting square root using Gaussian compound mean \(H \otimes A \). In this section the convergence process of the new Gaussian compound mean mean \(H_e^{(g)} \otimes H_e \) converging faster than \(H \otimes A \) are discussed.

The following table 1 and figures (2.1) and (2.2) illustrate the approximate process of computing \(\sqrt{2} \). Also evident that \(H_e^{(g)} \otimes H_e \) is convergence to common limit faster than \(H \otimes A \).

<table>
<thead>
<tr>
<th>Gaussian Compound Mean</th>
<th>New Compound Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H \otimes A)</td>
</tr>
<tr>
<td>(n)</td>
<td>(p_n)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.33333</td>
</tr>
<tr>
<td>2</td>
<td>1.411765</td>
</tr>
<tr>
<td>3</td>
<td>1.414211</td>
</tr>
<tr>
<td>4</td>
<td>1.414214</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

Table-1: The values of Gaussian compound mean and New compound mean

![Figure 2.1: Comparison of Gaussian compound mean and New compound mean](image-url)
Acknowledgement
The authors are thankful to the referees for their valuable suggestions.

References
15. G. Toader and S. Toader, Greek means and Arithmetic mean and Geometric mean, RGMIA Monograph,(2005), Australia.