THE EDGE-TO-EDGE MONOPHONIC NUMBER OF A GRAPH

I. Annalin Selcy1 & P. Arul Paul Sudhahar2 & S. Robinson Chellathurai3

1 Register Number-12446, Scott Christian College, Nagercoil-629 003, India.
2 Assistant Professor, Department of Mathematics, Rani Anna Government Arts College (W), Tirunelveli-627 012, India.
3 Associate Professor, Department of Mathematics, Scott Christian College, Nagercoil-629 003, India.
Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli - 627 012, Tamil Nadu, India.

Received: July 02, 2018
Accepted: August 13, 2018

ABSTRACT In this paper we introduce the edge-to-edge monophonic number, m_{ee}(G) of a connected graph with at least 3 vertices and study some of its general properties. We also determine the edge-to-edge monophonic number of certain classes of graphs. For each pair of integers k and q with 2 ≤ k ≤ q, there exists a connected graph G of order q + 1 and size q with $m_{ee}(G) = k$. Connected graphs of size q ≥ 4 with edge-to-edge monophonic number q is characterized.

Keywords: monophonic path, monophonic number, edge monophonic number, edge-to-edge monophonic number.
AMS Subject Classification: 05C12

1. INTRODUCTION

By a graph $G = (V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic graph theory terminology we refer to Harary [1]. For two vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u – v$ path in G. An $u – v$ path of length $d(u, v)$ is called an $u – v$ geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, $rad G$ and the maximum eccentricity is the diameter, $diam G$ of G. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B) = \min\{d(x, y) : x \in A, y \in B\}$. An $u – v$ path of length $d(A, B)$ is called an $A – B$ geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A – B$ geodesic if x is a vertex of an $A – B$ geodesic. For $A = (u, v)$ and $B = (z, w)$ with uw and zw edges, we write an $A – B$ geodesic as $uw – zw$ geodesic and $d(A, B)$ as $d(uw, zw)$. The maximum degree of G, denoted by $\Delta(G)$, is given by $\Delta(G) = \max\{\deg G(v) : v \in V(G)\}$, $N(v) = \{u \in V(G) : uv \in E(G)\}$ is called the neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge e of a graph G is called an extreme edge of G, if one of its ends is an extreme vertex of G. A chord of a path $p_u, u_1, u_2, \ldots, u_k$ is an edge $u_i u_j$, with $j \geq i + 2$. An $u – v$ path is called a monophonic path if it is a chordless path. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G lies on a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a m-set of G. The monophonic number of a graph is studied in [4, 6]. For a cut-vertex u in a connected graph G and a component H of $G – u$, the sub graph H and the vertex u together with all edges joining u and $V(H)$ is called a branch of G at u.

The following theorems are used in sequel.

Theorem: 1.1.[6] Every end-edge of a connected graph G belongs to every edge-to-vertex monophonic set of G.

Theorem: 1.2.[6] For a connected graph G with $q \geq 4m_{ee}(G) = q$ if and only if $G = K_{1, q}$.

2. THE EDGE-TO-EDGE MONOPHONIC NUMBER OF A GRAPH

Definition 2.1. Let $G = (V, E)$ be a connected graph with at least 3 vertices. A set $M \subseteq E$ is called an edge-to-edge monophonic set of G if every edge of G lies on a monophonic path joining a pair of edges of M. The edge-to-edge monophonic number $m_{ee}(G)$ of G is the minimum cardinality of its edge-to-edge monophonic sets and any edge-to-edge monophonic set of cardinality $m_{ee}(G)$ is said to be an m_{ee}-set of G.

162a | IJRAR- International Journal of Research and Analytical Reviews Research Paper
Example 2.2. For the graph G given in Figure 2.1, $M = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is a m_{ee}-set of G so that $m_{ee}(G)=3$.

Remark 2.3. There can be more than one m_{ee}-set of G for the graph G given in Figure 2.1, $M_1 = \{v_1, v_2, v_3, v_6, v_4, v_5\}$.

In the following we determine the edge-to-edge monophonic number of some standard graphs.

Theorem 2.4. For a connected graph G of size $q \geq 2$, $2 \leq m_{ee}(G) \leq q$.

Proof. A m_{ee}-set wants at least two edgeto form monophonic path and therefore $m_{ee}(G) \geq 2$. Also, the set of all edges of G is an edge-to-edge monophonic set of G so that $m_{ee}(G) \leq q$. Thus $2 \leq m_{ee}(G) \leq q$.

Theorem 2.5. Let v be an extreme vertex of a connected graph G, then every edge-to-edge monophonic set contains at least one extreme edge that is incident with v.

Proof. Let v be an extreme vertex of a connected graph G. Let $e_1, e_2, ..., e_k$ be the edges incident with v. Let M be any edge-to-edge monophonic set of G. We assume that $e_i \in M$ for all $i (1 \leq i \leq k)$. Suppose, $e_i \notin M$ for some $i (1 \leq i \leq k)$. Since M is an edge-to-edge monophonic path and $e = u_hv_{h+2}$ lies on a monophonic path joining two elements say $x, y \in M$. Let $x = v_1v_2$ and $y = v_kv_m$. Then $v \neq v_1, v_2, v_kv_m$ and $d_m(x, y) \geq 1$. Assume that without loss of generality let $P : u_0 = v_1, u_1, u_2, ..., u_h, u_{h+1}, u_{h+2}, ..., u_{k-1}, u_k = vy$ be a $x - y$ monophonic path, where $u_1 \neq v_2$ and $u_{k-1} \neq v_m$. Since v is an extreme vertex, u_h and u_{h+2} are adjacent and so $Q : u_0 = v_1, u_1, u_2, ..., u_h, u_{h+2}, u_{h+3}, ..., u_{k-1}, u_k = vh$ has a chord in P, which is a contradiction. Hence $e \in M$ for any $i (1 \leq i \leq k)$.

Corollary 2.6. Every edge of a connected graph G belongs to every edge-to-edge monophonic set of G.

Proof. This follows from Theorem 2.5. ■

Theorem 2.7. Let G be a connected graph with cut vertices and M is an edge-to-edge monophonic set of G. Then every branch of G contains an element of M.

Proof. Let us assume that there is a branch B of G at a cut-vertex v such that B contains no element of M. Then by Corollary 2.6, B does not contain any end-vertex of G. Hence it follows that no vertex of B is an end vertex of G. Let $u = xv$ be any edge of B such that $z \neq x$ and $z \neq y$ (such a vertex exists since $|V(B)| \geq 2$). Then u is not an edge of M and so u lies on a $e-f$ monophonic path $P : x_1, x_2, ..., x_j, y, ..., x_0$, where x_1 is an end of e and x_0 is an end of f with $e, f \in M$. Since v is a cut-vertex of G, the x_1-x and $x-x_0$ subpaths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of M.

Corollary 2.8. Let G be a connected graph with cut-edges and M an edge-to-edge monophonic set of G. Then for any non-pendant cut-edge of G, each of the two components of $G - e$ contains an element of M.

Proof. Let $e = uv$. Let G_1 and G_2 be the two components of $G - e$ such that $u \in V(G_1)$ and $v \in V(G_2)$. Since u and v are cut-vertices of G, it follows that G_1 contains at least one branch at u and G_2 contains at least one branch at v. Hence it follows from Theorem 2.7 that each of G_1 and G_2 contains an element of M.

Theorem 2.9. Let G be a connected graph and M be a m_{ee}-set of G. Then no non-pendant cut-edge of G belongs to M. ■

Figure 2.1
Proof. Let M be a m_{ee}-set of G. Suppose that $e = xy$ be a non-pendant cut-edge of G such that $e
otin M$. Let G_1 and G_2 be the two components of $G - e$. We claim that M' is an edge-to-edge monophonic set of G. By Corollary 2B, G_1 contains an edge uv and G_2 contains an edge $u'v'$, where $uv, u'v' \in M$. Let be any edge of G. Assume without loss of generality that f belongs to G_1. Since xy is a cut-edge of G, every monophonic path joining an edge of G_1 with an edge of G_2 contains the edge xy. Suppose that w is incident with xy or the edge uv of M or that lies on a monophonic path joining uv and xy. If f is adjacent to xy, then let $P = v_1, v_2, ..., v'$ be a $uf-xy$ monophonic path. Thus lies on the $uv-u'v'$ monophonic path $If f = uv$, then there is nothing to prove. If f lies on an $xymonophonic path say $v_1, v_2, ..., v'$, then let $yv_1, yv_2, ..., yv'$ be a $uv-u'v'$ monophonic path. Then clearly $v_1, v_2, ..., yv_1, yv_2, ..., yv'$ is a $uv-u'v'$ monophonic path. Thus lies on a monophonic path joining a pair of edges of M'. Thus we have proved that any edge of G is either lies on M on that lies in a monophonic path joining xy and uv of M and also lies on M' or lies on a monophonic path joining a pair of edges of M'. Hence it follows that M is an edge-to-edge monophonic path such that $|M'| = |M| - 1$, which is a contradiction to M a m_{ee}-set of G. Hence the theorem follows.

Theorem 2.10. For any non-trivial tree T with k end-edge, $m_{ee}(T) = k$ the set of all end-edges of T is the unique minimum edge-to-edge monophonic set of T.

Proof. This follows from Corollary 2.6 and Theorem 2.9.

Theorem 2.11. For the cycle $G = C_p(p \geq 4)$, $m_{ee}(G) = 2$.

Proof. Let $M = \{e, f\}$ be the set of two adjacent edges in G. Then M is an edge-to-edge monophonic set of G and so that $m_{ee}(G) = 2$.

Theorem 2.12. For the complete graph $G = K_p(p \geq 4)$, $m_{ee}(G) = \begin{cases} \frac{p}{2} & \text{if } p \text{ is even} \\ \frac{p+1}{2} & \text{if } p \text{ is odd} \end{cases}$

Proof. Let p be even. Let M be the set of $p/2$ independent edges of G. Then M is an edge-to-edge monophonic set of G and $som_{ee}(G) \leq p/2$. We prove that $m_{ee}(G) = p/2$. If not let $m_{ee}(G) < p/2$. Then there exists an edge-to-edge monophonic set M' of K_p such that $|M'| < p/2$. Then there exists at least one edge e of M such that $e \notin M'$. If M' is the set of independent edges of G, then e does not lie on a monophonic joining a pair of edges of M'. If M' is not independent, then also e does not lies on a monophonic joining a pair of edges of M'. Hence M' is not an edge-to-edge monophonic set of G. which is a contradiction. Thus M is a minimum edge-to-edge monophonic set. Therefore $m_{ee}(G) = p/2$.

Let p be odd. Let M be the set of $(p-1)/2$ independent edges and one adjacent edges of G. Then M is an edge-to-edge monophonic set of G and $som_{ee}(G) \leq (p-1)/2 + 1 = \frac{p+1}{2}$. We show that $m_{ee}(G) = \frac{p+1}{2}$. If not, let $m_{ee}(G) < \frac{p+1}{2}$. Then there exists at least one $e \in M$ such that $e \notin M'$. Hence M' is not an edge-to-edge monophonic set of G which is a contradiction. Thus M is a minimum edge-to-edge monophonic set. Therefore $m_{ee}(G) = \frac{p+1}{2}$.

Theorem 2.13. For the complete bipartite graph $G = K_{m,n}(2 \leq m < n)$, $m_{ee}(G) = 2$.

Proof. Let $U = \{u_1, u_2, ..., u_m\}$ and $V = \{v_1, v_2, ..., v_n\}$ be a partition of G. Let $M = \{u_1, v_1, u_m, v_n\}$. Then every edge of G lies on $u_1v_1 - u_mv_n$ monophonic path and so M is a monophonic set of G. Therefore $m_{ee}(G) = 2$.

Theorem 2.14. Let G be a connected graph which is not C_3 or a star. Then $m_{ee}(G) \leq q - 1$.

Proof. Let e be an edge of G which is not an end edge of G. Let $M = E(G) - \{e\}$. Since e is not an end edge of G, G is not a star. Since $G \neq C_3$, M is an edge-to-edge monophonic set of G so that $m_{ee}(G) \leq |M| = q - 1$.

Theorem 2.15. For each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q + 1$ and size q with $m_{ee}(G) = k$.

Proof. For $2 \leq k \leq q$, let P be a path of order $q - k + 3$. Let G be the graph obtained from P by adding $k - 2$ new vertices to P and joining them to any cut-vertex of P. Clearly, G is a tree of order $q + 1$ and size q with k end-edges and so by Theorem 2.10, $m_{ee}(G) = k$.

REFERENCES

1. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.