A TRACE INEQUALITY FOR POSITIVE DEFINITE QUATERNION HERMITIAN MATRICES

K. Gunasekaran¹ & M.Rahamathunisha²

¹,²Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumabakonam - 612002

Received: July 14, 2018
Accepted: August 26, 2018

ABSTRACT
In this note we prove that Tr(MN+PQ) > 0 when the following two conditions are met:
(i) The quaternion hermitian matrices M,N,P,Q are structured as follows M= A-B, N = B⁻¹ − A⁻¹, P = C - D, Q = (B + D)⁻¹ + (A + C)⁻¹
(ii) A,B are positive definite quaternion hermitian matrices and C,D are positive semidefinite quaternion hermitian matrices.

Keywords: Positive semi definite, Positive definite, Hermitian matrices, Quaternion matrices.

1. Introduction:
Trace inequalities are useful in many applications. For example, trace inequalities naturally arise in control theory (see e.g., [9]) and in communication system with multiple input and multiple output (see e.g., [11]). In this paper, the authors prove an inequality for which one application has already been identified: the uniqueness of a pure Nash equilibrium in concave games. Indeed, the reader will be able to check that the proposed inequality allows one to generalize the diagonally strict concavity condition introduce by Rosen in [10] to concave communication games with matrix strategies [1].

Let us start with scalar case. Let α, β, γ, δ be four reals such that α > 0, β > 0, γ ≥ 0, δ ≥ 0. Then it can be checked that we have the following inequality.

\[(α - β)\left(\frac{1}{β} - \frac{1}{α}\right) + (γ - δ)\left(\frac{1}{β + γ} - \frac{1}{α + γ}\right) ≥ 0\]

The main issue addressed here is to show that this inequality has a quaternion hermitian counterparts. i.e., we want to prove the following Lemmas and Theorem.

2. Auxiliary Results and Theorem:
The following Lemmas and Theorem is easy to prove with the help of quaternion hermitian matrices.

Lemma 2.1:
Let A,B be two positive definite quaternion hermitian matrices. Then

\[T = Tr[(A - B) * (B⁻¹ - A⁻¹)] ≥ 0\] (2.1)

Proof:
Let A = A₀ + A₁ j + A₂ k, B = B₀ + B₁ j + B₂ k,
A⁻¹ = A₀⁻¹ + A₁⁻¹ j + A₂⁻¹ k, B⁻¹ = B₀⁻¹ + B₁⁻¹ j + B₂⁻¹ k
here,
A - B = A₀ + A₁ j + A₂ k - (B₀ + B₁ j + B₂ k) = (A₀ - B₀) + (A₁ - B₁) j + (A₂ - B₂) k
B⁻¹ - A⁻¹ = B₀⁻¹ - A₀⁻¹ + (B⁻¹ j + B⁻¹ k) - (A⁻¹ j + A⁻¹ k)
= (B₀⁻¹ - A₀⁻¹) + (B⁻¹ j - A⁻¹ j) j + (B⁻¹ k - A⁻¹ k) k
T = ((A - B) * (B⁻¹ - A⁻¹)) = \{(A₀ - B₀) + (A₁ - B₁) j + (A₂ - B₂) k\} * \{(B₀⁻¹ - A₀⁻¹) + (B⁻¹ j - A⁻¹ j) j + (B⁻¹ k - A⁻¹ k) k\}
T = \{(A₀ - B₀)(B₀⁻¹ - A₀⁻¹) + (A₁ - B₁)(B⁻¹ j - A⁻¹ j) j + (A₂ - B₂) (B⁻¹ k - A⁻¹ k) k\} ≥ 0
T = \{(A - B) * (B⁻¹ - A⁻¹) ≥ 0\}

[since A * B = A₀B₀ + A₁B₁ j + A₂B₂ k and A,B are positive definite quaternion hermitian matrices]
That is,
\[T = \{(A - B) * (B⁻¹ - A⁻¹) ≥ 0\}\]
Then,
\[T = Tr[(A - B) * (B⁻¹ - A⁻¹)] ≥ Tr(A - B) * Tr(B⁻¹ - A⁻¹)\]
\[T = Tr[(A - B) = Tr[(A₀ - B₀) + (A₁ - B₁) j + (A₂ - B₂) k]\]
Therefore, \(\text{Tr}(A - B) * (B^{-1} - A^{-1}) \) ≥ 0

The proof is completed.

Lemma 2.2

Let, M and N be two positive semi definite quaternion hermitian matrices.

Then \(\text{Tr}(M^*N) \) ≥ 0

\[\text{......... (2.2)} \]

Proof:

Let, M and N be two positive semi definite quaternion hermitian matrices.

So,

\[M = M_0 + M_1j + M_2k \]
\[N = N_0 + N_1j + N_2k \]

\[M * N = M_0N_0 + M_1N_1j + M_2N_2k \] [since \(A*B = A_0B_0 + A_1B_1j + A_2B_2k \)]

\[\text{Tr}(M * N) \geq \text{Tr}(M) * \text{Tr}(N) \geq 0 \] [Since M and N are positive semi definite quaternion hermitian matrices]

Now,

\[\text{Tr}(M * N) \geq \text{Tr}(M_0 + M_1j + M_2k) * \text{Tr}(N_0 + N_1j + N_2k) \geq 0 \geq \text{Tr}(M) * \text{Tr}(N) \geq 0 \]

\[= \text{Tr}(M_0N_0 + M_1N_1j + M_2N_2k) \]
\[= \text{Tr}(M_0N_0) + \text{Tr}(M_1N_1)j + \text{Tr}(M_2N_2)k \]
\[\geq \text{Tr}(M_0) \text{Tr}(N_0) + \text{Tr}(M_1) \text{Tr}(N_1)j + \text{Tr}(M_2) \text{Tr}(N_2)k \]

Since \(\text{Tr}(M_0) * \text{Tr}(N_s) \geq 0 \) where \(s = 0, 1, 2 \)

This implies that \(\text{Tr}(M^*N) \geq 0 \)

The proof is completed.

Lemma 2.3

Let \(A, B \) be two positive definite quaternion hermitian matrices and \(C, D \) be two positive semi definite quaternion hermitian matrices whereas \(X \) is only assumed to be quaternion hermitian.

Then \(\text{Tr}(XA^{-1} * XB^{-1}) - \text{Tr}(X(A+C)^{-1} * (B+D)^{-1}) \geq 0 \)

\[\text{......... (2.3)} \]

Proof:

Let,

\[A = A_0 + A_1j + A_2k, \quad B = B_0 + B_1j + B_2k, \quad X = X_0 + X_1j + X_2k, \]
\[C = C_0 + C_1j + C_2k, \quad D = D_0 + D_1j + D_2k, \]
\[A^{-1} = A_0^{-1} + A_1^{-1}j + A_2^{-1}k, \quad B^{-1} = B_0^{-1} + B_1^{-1}j + B_2^{-1}k \]
\[XA^{-1} = X_0A_0^{-1} + X_1A_1^{-1}j + X_2A_2^{-1}k \]
\[XB^{-1} = X_0B_0^{-1} + X_1B_1^{-1}j + X_2B_2^{-1}k \]
\[XA^{-1} * XB^{-1} = (X_0A_0^{-1} + X_0B_0^{-1}) + (X_1A_1^{-1} + X_1B_1^{-1})j + (X_2A_2^{-1} + X_2B_2^{-1})k \]
\[\text{Tr}(XA^{-1} * XB^{-1}) \geq \text{Tr}(X_0A_0^{-1} + X_0B_0^{-1}) + \text{Tr}(X_1A_1^{-1} + X_1B_1^{-1})j + \text{Tr}(X_2A_2^{-1} + X_2B_2^{-1})k \geq 0 \]

So, \(\text{Tr}(XA^{-1} * XB^{-1}) \geq 0 \) [since \(A*B = A_0B_0 + A_1B_1j + A_2B_2k \)]

\[\text{......... (2.4)} \]

\[(A + C)^{-1} = (A_0 + C_0)^{-1} + (A_1 + C_1)^{-1}j + (A_2 + C_2)^{-1}k \]
\[(B + D)^{-1} = (B_0 + D_0)^{-1} + (B_1 + D_1)^{-1}j + (B_2 + D_2)^{-1}k \]
\[X(A + C)^{-1} * X(B + D)^{-1} = (X_0(A_0 + C_0)^{-1} + X_1(A_1 + C_1)^{-1}j + X_2(A_2 + C_2)^{-1}k) \]
\[* (X_0(B_0 + D_0)^{-1} + X_1(B_1 + C_1)^{-1}j + X_2(B_2 + C_2)^{-1}k) \]
\[\text{Tr}(X(A + C)^{-1} * X(B + D)^{-1}) = \text{Tr} \{ [X_0(A_0 + C_0)^{-1} + X_1(A_1 + C_1)^{-1}j + X_2(A_2 + C_2)^{-1}k] \]
\[* [X_0(B_0 + D_0)^{-1} + X_1(B_1 + C_1)^{-1}j + X_2(B_2 + C_2)^{-1}k] \} \geq 0 \]

By Lemma 2.2, \(\text{Tr}(M * N) \geq \text{Tr}(M) * \text{Tr}(N) \)

Therefore, \(\text{Tr}(X(A + C)^{-1} * X(B + D)^{-1}) \geq \text{Tr}(X(A + C)^{-1}) * \text{Tr}(X(B + D)^{-1}) \geq 0 \)

So, \(\text{Tr}(X(A + C)^{-1} * X(B + D)^{-1}) \geq 0 \)

\[\text{......... (2.5)} \]
From (2.4) – (2.5), we get $\text{Tr}\{XA^{-1}XB^{-1}\} – \text{Tr}\{X(A+C)^{-1}X(B+D)^{-1}\} \geq 0$
The proof is completed.

Theorem 2.4

Let AB be two positive definite quaternion hermitian matrices and C,D, two positive semi definite quaternion hermitian matrices. Then

$$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1}) + (C - D) \ast [(B + D)^{-1} - (A + C)^{-1}]) \geq 0.$$

Proof:

Let, $A = A_0 + A_1 j + A_2 k$, $B = B_0 + B_1 j + B_2 k,$

$$A^{-1} = A_0^{-1} + A_1^{-1} j + A_2^{-1} k, \quad B^{-1} = B_0^{-1} + B_1^{-1} j + B_2^{-1} k$$

here,

$$A - B = A_0 + A_1 j + A_2 k - (B_0 + B_1 j + B_2 k) = (A_0 - B_0) + (A_1 - B_1) j + (A_2 - B_2) k$$

$$B^{-1} - A^{-1} = B_0^{-1} + B_1^{-1} j + B_2^{-1} k - (A_0^{-1} + A_1^{-1} j + A_2^{-1} k)$$

$$= (B_0^{-1} - A_0^{-1}) + (B_1^{-1} - A_1^{-1}) j + (B_2^{-1} - A_2^{-1}) k$$

$$T = \{(A - B) \ast (B^{-1} - A^{-1})\} = \{(A_0 - B_0) + (A_1 - B_1) j + (A_2 - B_2) k\} \ast \{(B_0^{-1} - A_0^{-1}) + (B_1^{-1} - A_1^{-1}) j + (B_2^{-1} - A_2^{-1}) k\} \geq 0$$

$T = \{(A - B) \ast (B^{-1} - A^{-1})\} \geq 0$

from (2.4)

$$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1})) \geq \text{Tr}(B^{-1} - A^{-1})$$

Then,

$$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1})) \geq \text{Tr}(B^{-1} - A^{-1})$$

$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1})) = \text{Tr}([A_0 - B_0] + [A_1 - B_1] j + [A_2 - B_2] k) \ast \{(B_0^{-1} - A_0^{-1}) + (B_1^{-1} - A_1^{-1}) j + (B_2^{-1} - A_2^{-1}) k\} \geq 0$

Thus,

$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1})) \geq \text{Tr}(B^{-1} - A^{-1}) \geq 0$

Therefore, $T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1})) \geq 0$

Then, let $C = C_0 + C_1 j + C_2 k, \quad D = D_0 + D_1 j + D_2 k$

$$T = \text{Tr}((C - D) \ast [(B + D)^{-1} - (A + C)^{-1}]) = \text{Tr}([C_0 - D_0] + [C_1 - D_1] j + [C_2 - D_2] k) \ast \{(B_0 + D_0) + (B_1 + D_1) j + (B_2 + D_2) k\}^{-1} - \{(A_0 + C_0) + (A_1 + C_1) j + (A_2 + C_2) k\}^{-1}$$

$$\geq \text{Tr}([C_0 - D_0] + [C_1 - D_1] j + [C_2 - D_2] k) \ast \text{Tr}([B_0 + D_0] + (B_1 + D_1) j + (B_2 + D_2) k]^{-1} - \{(A_0 + C_0) + (A_1 + C_1) j + (A_2 + C_2) k\}^{-1}$$

$$\geq \text{Tr}((C - D) \ast [(B + D)^{-1} - (A + C)^{-1}] \geq 0$$

Therefore, $T = \text{Tr}((C - D) \ast [(B + D)^{-1} - (A + C)^{-1}] \geq 0$

Adding (2.5) and (2.6), we have

$T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1}) + \text{Tr}((C - D) \ast [(B + D)^{-1} - (A + C)^{-1}] \geq 0$

That is $T = \text{Tr}((A - B) \ast (B^{-1} - A^{-1}) + \text{Tr}((C - D) \ast [(B + D)^{-1} - (A + C)^{-1}] \geq 0$

The proof is complete.

References:

