Phytochemical and biological evaluation of roots of *Plumbago* Linn.

Smita S. Chaudhari¹ & Amit S. Chaudhari² & G.S. Chaudhari³

¹Assistant Professor, Department of Botany, Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon,
²Student, T. N. Medical College, Mumbai
³Reader, P. G. Department of Botany, M. J. College, Jalgaon

Received: July 19, 2018 Accepted: October 02, 2018

ABSTRACT

Roots of two species of *Plumbago* Linn., viz. *P. zeylanica* Linn. and *P. auriculata* Lam., were used for present study with aim to suggest whether roots of *P. auriculata*, a widely available ornamental plant with least medicinal value can be used as substitute for roots of *P. zeylanica*, a threatened multivalent medicinal plant for therapeutic purpose based on phytochemical and antimicrobial studies. Petroleum ether, chloroform, ethanol, aqueous extracts of roots were used for preliminary phytochemical screening and antimicrobial studies against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, Candida albicans, Aspergillus niger. Roots of both plants are ample source of phytoconstituents namely Carbohydrates, Proteins, Amino Acids, Lipids, Alkaloids, Tannins, Flavonoids, Steroids, Glycosides. Maximum antimicrobial activity (17.45mm) was observed in chloroform extract of root of *P. auriculata* against *C. albicans*. Minimum antimicrobial activity (14mm) was observed in ethanol extracts of roots of both plants against *A. niger*. Both the plants have more or less similar phytochemical profile and antimicrobial activities with slight differences.

Keywords: *P. zeylanica, P. auriculata*, preliminary phytochemical screening, antimicrobial activity.

Introduction

Ayurveda has deep root in our cultural heritage and cater to medicare of huge section of our population. The earliest mention of use of medicinal plants is found in *Rigveda* (one of the oldest repositories of human knowledge) which enlists 67 plants of therapeutic use. The *Yajurveda* lists 81 medicinal plants whereas *Atharvaveda* describes 290 medicinal plants. *Vedas* were followed by *CharakSamhita* (in which 341 medicinal plants are mentioned) and *SushrutSamhita* (in which 395 medicinal plants are mentioned) which added knowledge to science of medicinal plants. The World Health Organization (WHO) is encouraging developing countries to use herbal remedy which they have been used traditionally for centuries. In recent time there has been shift towards herbal cure because of pronounced side effects of allopathic drugs (Agrawal and Paridhavi, 2007). Herbal renaissance is happening all over the World. Globalization of Ayurveda has gained momentum. Unani system of medicine also uses herbal drugs (Agrawal and Paridhavi, 2007).

P. zeylanica Linn. (wild variety) is very popular plant in ayurveda because of its good medicinal potential. Roots of this plant have more medicinal value as compared to other parts. Roots are used to treat piles, anaemia, ring – worm, scabies, jaundice, cough, asthma, epilepsy, hysteria etc. It is also abortifacient, aphrodisiac, appetizing, antiseptic, febrifuge, cardiotonic, neuroprotective, restorative, etc. (Chaudhari and Chaudhari, 2015) This plant has been continuously collected from the wild without replanting. It is listed as threatened medicinal plant (Parthipan, 2006; Mittal and Sharma, 2010). If *P. zeylanica* is not conserved and propagated properly, it is likely to be endangered in future. Another species *P. auriculata* Lam. is ornamental plant with least medicinal use. It is cultivated variety and widely available. It is need of hour to find whether the phytochemical constituents and antimicrobial activities of both the plants are the same or not which is helpful to know whether the medicinal potential of both the plants is the same or not. Antimicrobial activities of both plant extracts were evaluated against four pathogenic microorganisms viz. *Staphylococcus aureus*, *Pseudomonas aeruginosa*, Candida albicans, Aspergillus niger.

The objective of this study was to suggest whether root of *P. auriculata* can be used as substitute for root of *P. zeylanica* for therapeutic purpose.

Materials and Methods

1. **Collection of plant Material**

 Roots of healthy plants of *P. zeylanica* Linn. and *P. auriculata* Lam. were collected. Freshly collected roots were washed thoroughly with water. Roots were shade dried separately at room temperature. Dried roots were cut into pieces. Dried plant parts were pulverized separately using electric grinder and stored in airtight container for further use.
2. Preparation of extracts

Extracts of shade dried roots were obtained by using four solvents – petroleum ether (60-80°C), chloroform, ethanol, water.

Petroleum ether, chloroform and ethanol extracts were obtained by successive solvent extraction method using Soxhlet apparatus and aqueous extract by maceration (Khandelwal, 2011).

Petroleum ether, chloroform and ethanol extract was concentrated by distilling off the solvent (Khandelwal, 2011). Aqueous extract was concentrated under reduced pressure.

Concentrated extracts were dried on water bath. Colour and consistency of extracts were noted.

The residue obtained from each solvent was weighed and its percentage successive solvent extractive values (Kumar et al, 2011) (%w/w) were calculated with reference to weight of air dried plant material.

3. Screening tests for detection of organic constituents:

Test for carbohydrates

1. Molish’s Test (General Test)
 - Test - To 2-3ml extract, few drops of alpha-naphthol solution in alcohol was added, shaken and conc. H₂SO₄ was added from sides of test tube (Khandelwal, 2011; Roseline, 2011)
 - Observation – Formation of violet ring at the junction of two liquids (Khandelwal, 2011; Roseline, 2011) or the whole reaction mixture showed same color after shaking (Roseline, 2011)
 - Inference - Presence of carbohydrates

2. Fehling’s Test (Khandelwal, 2011)
 - Test - 1ml Fehling’s A and 1ml Fehling’s B solution were mixed, boiled for 1 minute, Equal volume of extract was added. Heated in boiling water bath for 5-10 minutes
 - Observation – First yellow then brick red precipitate
 - Inference - Presence of reducing sugars

3. Benedict’s Test (Khandelwal, 2011)
 - Test - Equal volume of Benedict’s reagent and extract were mixed in test tube. Heated in boiling water bath for 5 minutes
 - Observation – green, yellow or red coloured solution
 - Inference - Presence of reducing sugars

4. Barfoed’s Test (Khandelwal, 2011)
 - Test - Equal volume of Barfoed’s reagent and extract were mixed. Heated for 1-2 minutes in boiling water bath and cooled
 - Observation – Formation of red precipitate
 - Inference - Presence of monosaccharide

5. Iodine Test (Khandelwal, 2011)
 - Test - Extract + few drop of dil. iodine solution
 - Observation – Blue colour appeared, it disappeared on boiling and reappeared on cooling
 - Inference - Presence of starch (polysaccharide)

6. Test for Mucilage (Khandelwal, 2011)
 - Test – The powdered plant material was soaked in water
 - Observation – Plant material swelled in water
 - Inference - Presence of mucilage

Determination of swelling factor/swelling index

(Khandelwal, 2011)

1 gram of pulverized plant material was taken in 25ml stoppered measuring cylinder
2. Water up to 25ml marking was added
3. The mixture was shaken occasionally during 23 hours
4. It was allowed to stand for one hour
5. The volume in ml occupied by the plant material was measured

Test for Proteins (Khandelwal, 2011)

1. Biuret Test (General Test)
 - Test - Extract + 4 % NaOH + few drops of 1% CuSO₄ solution
 - Observation – Violet or pink colour
 - Inference - Presence of proteins
2. **Millon’s Test** (Khandelwal, 2011)

 Test - 3ml Extract + 5ml Millon’s reagent

 Observation – Formation of white precipitate, warmed, precipitate turned brick red or the precipitated dissolved giving red coloured solution

 Inference - Presence of proteins

Test for Amino Acids

Ninhydrin Test (Khandelwal, 2011)

 Test - 3ml of extract and 3 drops of 5% Ninhydrin solution was heated in boiling water bath for 10 minutes

 Observation – Purple or bluish colour

 Inference - Presence of amino Acids

Test for lipids (Patil, 1990)

Test – Extract + sudan III, mixture was shaken well

 Observation – Red color

 Inference - Presence of lipids

Tests for Alkaloids (Khandelwal, 2011)

Extract was treated with dilute HCl and filtered. Following tests were performed with filtrate

1. **Wagner’s test**

 Test - 2-3ml filtrate treated with Wagner’s reagent

 Observation - Reddish brown precipitate

 Inference - Alkaloids present.

2. **Mayer’s Test**

 Test - 2-3ml filtrate treated with Mayer’s reagent

 Observation - Creamy precipitate

 Inference - Alkaloids present.

3. **Hager’s Test**

 Test - 2-3ml filtrate treated with Hager’s reagent

 Observation - Yellow precipitate

 Inference - Alkaloids present.

4. **Tannic acid Test**

 Test - 2-3ml filtrate treated with Tannic acid solution

 Observation - Buff coloured precipitate

 Inference - Alkaloids present.

5. **Dragendroff’s Test**

 Test - 2-3ml filtrate treated with Dragendroff’s reagent

 Observation - Orange brown precipitate

 Inference - Alkaloids present.

Tests for Tannins and Phenolic compounds

1. **FeCl₃ test** (Khandelwal, 2011; Roseline, 2011)

 Test - Extract treated with 5% FeCl₃ solution

 Observation - Deep blue – black, green colour.

 Inference - Presence of tannin.

2. **Lead acetate Test** (Khandelwal, 2011)

 Test - Extract treated with lead acetate solution

 Observation - White precipitate

 Inference - Presence of tannin.

3. **Potassium permanganate Test** (Khandelwal, 2011)

 Test - Extract + dilute potassium permanganate solution

 Observation – Decolourisation

 Inference - Presence of Tannin.

4. **Bromine Water** (Khandelwal, 2011)

 Test - Extract + bromine water

 Observation - Decolourisation.

 Inference - Presence of tannin.
Test for Flavonoids

1. Shinoda Test (Khandelwal, 2011)
 Test - Extract + 5ml 95% alcohol, few drops of conc. HCl and 0.5 gram magnesium turnings
 Observation - Orange, pink, red to purple colour
 Inference - Flavonoids present

Test for glycosides

a) Test for Cardiac glycosides

1. Legal Test (Khandelwal, 2011; Roseline, 2011)
 Test - Extract + 1ml pyridine + 1ml sodium nitroprusside, then made alkaline
 Observation - Pink or red colour.
 Inference - Cardiac glycosides present

2. Keller-Killiani Test (Khandelwal, 2011)
 Test - To 2ml of extract, glacial acetic acid was added, then one drop 5% FeCl₃ and conc. H₂SO₄ was added
 Observation - Reddish brown color appeared at the junction of the two liquid layers and upper layer appears bluish green.
 Inference - Cardiac glycosides present

3. Libermann’s Test (Khandelwal, 2011)
 Test - 3ml of Extract + 3ml of acetic anhydride. Heat ed, cooled, few drops of conc. H₂SO₄ was added
 Observation - Blue colour.
 Inference – Cardiac glycoside present

b) Test for anthraquinone glycosides (Khandelwal, 2011; Roseline, 2011)

1. Borntrager’s Test.
 Test - 3ml of Extract + dilute H₂SO₄, boiled and filtered. To cold filtrate, equal volume of benzene or chloroform was added, shaken well. Lower organic layer was separated and to this ammonia was added slowly.
 Observation - Pinkish red color to ammonical layer
 Inference - Anthraquinone glycosides present

c) Test for Saponin glycosides (Khandelwal, 2011)

1. Foam Test
 Test - Extract was shaken vigorously with water
 Observation - Persistent foam.
 Inference – Saponin glycosides present

2. Haemolytic Test
 Test - Extract was added to one drop of blood placed on glass slide
 Observation - Appearance of haemolytic zone
 Inference - Saponin glycosides present

d) Test for Coumarin glycosides

1. Test (Evans, 2009)
 Test - Extract made ammonical
 Observation - Blue, blue-green or violet fluorescence
 Inference - Coumarin glycosides present

2. Test (Khandelwal, 2011)
 Test - Extract + 1N NaOH
 Observation - Blue or green Fluorescence
 Inference - Coumarin glycosides present

e) Test for cyanogenetic glycosides

1. Grignard reaction or Sodium picrate Test
 Test - Filter paper strip was soaked in 10% picric acid and then in 10% sodium carbonate and dried. Moistened powdered plant material was placed in a conical flask. The flask was stoppered with a cork containing aforesaid filter paper strip hanging down from the stopper through the slit (Khandelwal, 2011) and the flask was incubated at 40°C for two hours. No color change in impregnated paper was observed, the conical flask was left at room temp for further 24-28 hours for re-examination (Harborne, 2010)
 Observation - Change in colour of paper from yellow to brown red within 2 or 48 hours
Inference – Presence of cyanogenetic glycosides

Tests for Steroid (Khandelwal, 2011)

1. **Salkowski Test**
 - **Test** - 2ml extract + 2ml chloroform + 2ml conc. H₂SO₄ shaken well
 - **Observation** - Chloroform layer appeared red and acid layer showed green yellow fluorescence
 - **Inference** – Presence of steroid

2. **Liebermann-Burchard Test**
 - **Test** - 2ml extract was mixed with chloroform. 1- 2ml acetic anhydride was added and 2 drop conc. H₂SO₄ was added from the side of test tube
 - **Observation** - First red then blue and finally green color appeared
 - **Inference** – Presence of steroid

3. **Liebemann’s Test**
 - **Test** - 3ml extract with 3ml acetic anhydride was mixed heated and cooled. Few drops conc. H₂SO₄ was added
 - **Observation** - Blue colour
 - **Inference** – Presence of steroid

4. **Antimicrobial susceptibility testing**

For determining antimicrobial activity, plant extracts were assessed qualitatively by disc diffusion assay. (Munro, 2007; Mahmoud et al, 2007; Cappuccino and Sherman, 2012; Lalitha)

All micro-organisms used for experiments were procured from National Collection of Industrial Micro-organisms (NCIM), National Chemical laboratory (NCL), Pune, India. Antimicrobial activity of different plant extracts was tested against following bacteria and fungi:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Strain Name</th>
<th>Strain Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram positive bacteria</td>
<td>Staphylococcus aureus</td>
<td>NCIM 2079</td>
</tr>
<tr>
<td>Gram negative bacteria</td>
<td>Pseudomonas aeruginosa</td>
<td>NCIM 2036</td>
</tr>
<tr>
<td>Fungi (Yeast)</td>
<td>Candida albicans</td>
<td>NCIM 3471</td>
</tr>
<tr>
<td>Fungi (Mould)</td>
<td>Aspergillus niger</td>
<td>NCIM 545</td>
</tr>
</tbody>
</table>

1. **Inoculum preparation:**

 Abacterial inoculum was prepared using sterile saline (0.85% NaCl). For this, well-isolated colonies of the respective bacterial strains were selected from an agar plate culture and dispensed in sterile saline. The turbidity of bacterial suspension was adjusted to O. D. of 0.1 at 600 nm (Cappuccino and Sherman, 2012) using sterile saline. Similarly, an inoculum of *Candida albicans* was prepared.

 Fungal inoculums were prepared using sterile saline (0.85% NaCl) with 1% Tween 80. For this, fungal spores of the respective fungal strain were obtained from an agar plate culture and dispensed in sterile saline containing Tween-80. The suspension containing 1×10⁵ spores per ml was used for the assay.

2. **Media preparation:**

 The bacterial strains (*Staphylococcus aureus* and *Pseudomonas aeruginosa*) were cultured using a nutrient agar medium. The yeast *Candida albicans* was cultured using a malt extract glucose yeast extract peptone (MGYP) medium. For fungi (*Aspergillus niger*), potato dextrose agar medium was used.

3. **Sterilization:**

 All media were sterilized at 121°C, 15 lbs pressure for 15 minute in autoclave. After autoclaving, respective media were allowed to attain temperature 50°C. Then corresponding agar medium was poured into sterile petri-plate which formed uniform layer of agar medium (~ 4 mm). Then petri plates were allowed to cool to room temperature and stored in a refrigerator (2 to 8°C) until further use. Forceps, glasswares like petri dishes, test tubes, etc. were also sterilized in autoclave.

4. **Preparation of test solutions and standard:**

 A stock solution of concentration 1000 microgram/ml of each dried plant extract was prepared in dimethyl sulfoxide (DMSO). Antimicrobial activity was evaluated by taking concentration 100 microgram per disc. For this, HiMedia sterile discs (6 mm diameter) were used. HiMedia antibiotic standard disc containing Ciprofloxacin (10 microgram per disc) was used as a standard against bacteria and Amphotericin- B (100 units per disc) was used as a standard against fungi. The standard disc was moistened with DMSO before use.

5. **Evaluation of antimicrobial activity:**

 The corresponding nutrient agar plate was inoculated by streaking the swab over the entire agar surface. HiMedia sterile discs (diameter 6 mm) previously loaded with plant extract in DMSO (100 microgram per disc) were placed on inoculated plates. Each disc was gently pressed with sterile forceps to
ensure complete contact with agar surface. Inoculated petri plates were kept in the refrigerator. After 30 minutes, petri-plates with bacterial and yeast strains were incubated at 37°C while petri plates inoculated with fungal strain were incubated at 28°C.

6. **Interpretation of results**

After appropriate (for bacteria 18-24 hrs, for yeast 24 and for fungi 3-7 days) incubation period, each plate was examined. The diameters of the zones of inhibition were measured.

Results

Physicochemical characters like colour, consistency and successive solvent extractive values of different extracts of roots are presented in table 1.

The results of preliminary phytochemical screening of petroleum ether, chloroform, ethanol and aqueous extracts of roots of both plants are given in the table 2. The results of screening for cyanogenic glycosides, mucilage and swelling index of roots of plants are tabulated in table 3.

The antimicrobial activity of plant extracts was detected by indication of zone around the disc. (Fig 1, 2, 3, 4) The diameters of zones of inhibition obtained in biological evaluation are tabulated in the following table 4.

![Fig. 1. Antibacterial activity against *Staphylococcus aureus*](image1)

![Fig. 2. Antibacterial activity against *Pseudomonas aeruginosa*](image2)

![Fig. 3. Antifungal activity against *Candida albicans*](image3)

![Fig. 4. Antifungal activity against *Aspergillus niger*](image4)
Discussion

The colours of different extracts of roots of Plumbago were found in different shades of brown. The consistency was found to be sticky in petroleum ether and chloroform solvent extract and more sticky in ethanol extract and non sticky in aqueous (polar solvent) extract. The successive extractive values for root of both plants are in the order- ethanol soluble successive extract value > water soluble successive extract value > chloroform soluble successive extract value > petroleum ether soluble successive extract value.

On the basis of phytochemical screening of different extracts of roots of both plants we concluded that roots of these plants are ample source of phytochemicals like carbohydrates, proteins, amino acids, lipids, alkaloids, tannin, flavonoids, cardiac glycosides, anthraquinone glycosides, saponin, coumarin glycosides cyanogenic glycosides, steroids. Ethanolic extracts have shown to possess maximum number of phytochemicals.

Many previous workers studied preliminary phytochemical screening of *P. zeylanica*. Preliminary phytochemical screening of root was carried out by Agbaje and Adeniran, 2009 (aqueous extract); Gupta et al, 2010 (petroleum ether, chloroform, ethanol extract); Ajayi et al, 2011 (ethanol extract); Rao et al, 2012 (petroleum ether, benzene, chloroform, ethanol, aqueous extract); Kakad et al, 2013 (Amyl alcohol, ethanol, methanol, ether, chloroform, aqueous extract); Jain et al, 2014 (methanol extract); Borhade et al, 2014 (petroleum ether, chloroform, methanol, water extract); Dohare et al, 2015 (petroleum ether, ethanol, aqueous extract).

Our results show some variations with records of previous work of preliminary phytochemical screening of *P. zeylanica*.

This is because there are several factors which affect presence and amount of secondary metabolites in plants. Secondary metabolites show considerable variation in plants depending on environmental, ontogenetic and genetic factors. Environmental factors affecting secondary metabolites are temperature, rainfall, length of the day, quality of light, altitude, type of soil, fertilizers used etc. Other factors affecting secondary metabolites are collection and storage of seeds for sowing, time of seed sowing, season and age of plant at the time of collection of drug, method of drying of drug (Evans, 2009).

The ability of some plants to synthesize cyanogenic glycosides is cyanogenesis. When cyanogenic glycosides are enzymatically hydrolysed, they release cyanohydric acid (HCN) which is extremely toxic to a wide spectrum of organism. Cyanogenesis is one of the mechanisms that protect plants against predators such as herbivores. In intact plant, enzyme and cyanogenic glycosides remain separated [as these glycosides are stored in vacuole (http://en.wikipedia.org/wiki/Glycoside)] but if plant tissue is damaged, both are put in contact and toxic HCN is released (Francisco and Pinotti, 2000). Roots of both plants show presence of cyanogenic glycosides. The colour change of picrate paper in the present investigation was observed within 24 hours. A brown red colouration of picrate paper within 2 hours indicates the presence of cyanogenic glycosides and the respective hydrolytic enzyme and the plants are considered cyanogenic in the field. A brown red coloration of picrate paper within 48 hours indicates that the cyanogenic glycosides spontaneously released HCN without the action of enzyme and plants are not cyanogenic in the field because evolution of HCN is very slow (Francisco and Pinotti, 2000). The intensity of colour change of picrate paper was more in *P. zeylanica* root than in *P. auriculata* root. This indicates presence of more amounts of cyanogenic glycosides in *P. zeylanica* root than in *P. auriculata* root. Francisco and Pinotti (2000) also reported that wild plant species are more resistant to predators. We do not find previous reports of phytochemical screening for cyanogenic glycosides in roots of Plumbago.

In relation to *Staphylococcus aureus* antibacterial activity was shown by petroleum ether, chloroform, ethanol extract of root of *P. zeylanica* while in *P. auriculata* antibacterial activity against *Staphylococcus aureus* was shown by all the four extracts of root.

None of the extract of both plants showed antibacterial activity against *Pseudomonas aeruginosa*.

In relation to *Candida albicans*, antifungal activity was shown by petroleum ether, chloroform, ethanol extracts of root of *P. zeylanica* while in *P. auriculata*, this antifungal activity was shown by all the four extracts of root. In relation to *Aspergillus niger*, antifungal activity was shown by petroleum ether, chloroform, ethanol extract of root both species of Plumbago.

Renuga and Thandapani (2013) got positive results of antibacterial activity of ethanol extract of *P. zeylanica* root (100 μg/ml) against *Pseudomonas aeruginosa* and *Staphylococcus aureus* by disc diffusion.
method but we got positive result against Staphylococcus aureus only and not against Pseudomonas aeruginosa.

More or less similar phytochemical profile and antimicrobial activities with slight differences suggested that P. auriculata can be used as substitute for P. zeylanica but further characterization is required.

Table 1: Physicochemical characters of different solvent extracts of roots of two species of Plumbago Linn.

<table>
<thead>
<tr>
<th>Part of plant</th>
<th>Character</th>
<th>Petroleum ether</th>
<th>Chloroform</th>
<th>Ethanol</th>
<th>Aqueous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>Colour</td>
<td>Yellowish brown</td>
<td>Yellowish brown</td>
<td>Yellowish brown</td>
<td>Dark brown</td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td>Sticky</td>
<td>Sticky</td>
<td>Sticky</td>
<td>More sticky</td>
</tr>
<tr>
<td></td>
<td>Successive extractive value</td>
<td>1.137</td>
<td>0.549</td>
<td>1.562</td>
<td>1.157</td>
</tr>
</tbody>
</table>

Acknowledgements

We are grateful to Principal, M. J. College, Jalgaon and Principal, Dr. A. G. D. Bendale MahilaMahavidyalaya, Jalgaon for providing necessary facilities. We are thankful to Dr. Ulhas Patil, Head, Department of Microbiology, R. C. Patel Arts, Commerce and Science College, Shirpur for help during antimicrobial testing.

Table 2: Phytochemical evaluation of root extracts of two species of Plumbago Linn.

<table>
<thead>
<tr>
<th>Phytochemical Tests</th>
<th>Petroleum ether Extract</th>
<th>Chloroform Extract</th>
<th>Ethanol Extract</th>
<th>Aqueous Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests For Carbohydrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Molish's Test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2. Fehling's Test</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3. Benedict's Test</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4. Barfoed's Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Iodine Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Biuret Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2. Million's Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Amino Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ninhydrin Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Lipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract + Sudan III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Alkaloids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Wagner's Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2. Mayer's Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3. Hager's Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4. Tannic Acid Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5. Dragendorf's Test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tests For Tannin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Fecl3 Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Lead acetate Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Potassium permanganate Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Bromine water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Flavonoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Shinoda Test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tests For Glycosides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Test for cardiac glycosides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Legal Test + + + + + + - -
Keller-killiani Test + + + + + + + -
Liebermann's Test + + + + - - - -

2. Test for anthraquinone glycosides
Borntrager’s Test + - + - + + + +

3. Test for saponin
Foam Test - - - - + + + +
Haemolytic Test - - - - + + + +

4. Test for coumarin glycosides
Ammonical solution show blue, blue green or violet fluorescence + + + + + + + +
Extract+1N NaOH + + + + + + + +

Tests For Steroids
1. Salkowski Test + + + + + + - -
2. Liebermann-Burchard Test + + + + + + - -
3. Liebermann’s Test + + + + - - - -

+ = Present, - = Absent

Table 3: Results of test for Cyanogenic Glycosides and mucilage

<table>
<thead>
<tr>
<th>Test</th>
<th>P. z</th>
<th>P. a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grignard reaction for cyanogenic glycoside</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Test for mucilage</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Swelling Index</td>
<td>1.67</td>
<td>4.33</td>
</tr>
</tbody>
</table>

Table 4: Antimicrobial activity of extracts of Plumbago at conc. 100 µg per disc

<table>
<thead>
<tr>
<th>Type of root extract</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td></td>
<td>P. z</td>
</tr>
<tr>
<td>Petroleum ether</td>
<td>17.02</td>
</tr>
<tr>
<td>Chloroform</td>
<td>17.10</td>
</tr>
<tr>
<td>Ethanol</td>
<td>16.89</td>
</tr>
<tr>
<td>Aqueous</td>
<td>-</td>
</tr>
<tr>
<td>Ciprofloxin (10 µg per disc)</td>
<td>19.26</td>
</tr>
<tr>
<td>Amphotericin - B (100 units / disc)</td>
<td>NA</td>
</tr>
</tbody>
</table>

- means no zone of inhibition
NA means not applicable

References