SOME LABELING PARAMETERS OF $D(vK_{1,n})$

Stephen John. B¹ & Jovit Vinish Melma. G²

¹Associate Professor & ²Research Scholar Full Time (Reg.No.: 19113012092002) P.G and Research Department of Mathematics, Annai Velankanni College (Tholayavattam, Kanniyakumari District, 629157), Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

Received: Feb. 11, 2019

Accepted: Feb. 19, 2019

ABSTRACT: Graph labeling was first introduced in the late 1960's. A graph labeling is the assignment of labels, traditionally represented by integers to the vertices/edges or both of a graph. It is a recent developing area in graph theory. In this paper, we established a general formula to label the vertices and edges of the duplication of $K_{1,n}$; n>1 by different labeling parameters. Now we compare the radio number with the minimum span of arithmetic, odd mean, even mean, graceful graphs. Also we have proved $S_o(G) = S_e(G)$ where $S_o(G)$ and $S_e(G)$ are minimum span (relative to the vertices) of odd mean and even mean graphs.

Key Words: Graph, Labeling, Radio number, Graph duplication.

Introduction:

In 1967, A. Rosa published a pioneering paper on graph labeling problems (5). A labeling of a graph G = (V, E) is a mapping f from the vertex set V into the set of non-negative integers that induces for each edge $uv \in E$, a label depending on the vertex labels f(u) and f(v). In 1973, E. Sampath Kumar introduced the concept of Graph duplication and proved some results (6).

Definition: 1.1

A **graph** G is an ordered pair (V(G),E(G)) consisting of a non-empty set V(G) of vertices and a set E(G), disjoint from V(G), of edges, together with an incidence function ψ_G that associate with each edge of G is an unordered pair of vertices of G.

Definition: 1.2

A **bipartite graph** is a graph whose vertex set can be partitioned into two subsets V_1 and V_2 , such that each edge has one end in V_1 and one end in V_2 .

A bipartite graph is said to be **complete** if every vertex of V_1 is joined to every vertex of V_2 . A complete bipartite graph with $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$. **K**_{1,n} is called a **star** graph for $n \ge 1$. **Definiton: 1.3**

A **labeling** or valuation of a graph G is an assignment f of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels f(x) and f(y).

Definiton: 1.4

The **distance** between any two vertices u and v denoted by d(u,v) is the length of a shortest u-v path, also called a u-v geodesic.

Definiton: 1.5

Let G be a graph and v be a vertex of G. The **eccentricity** of the vertex v is the maximum distance from v to any other vertex of G.

That is $e(v) = max \{d(v, w): w \in V(G)\}.$

Definition: 1.6

The **diameter** of G is the maximum eccentricity among the vertices of G. Which is denoted by $diam(G) = max \{e(v): v \in V(G)\}$.

Definition: 1.7

The **span** of f is defined as $\max\{|f(u) - f(v)|: u, v \in V(G)\}$

Definition: 1.8

A **radio labeling** f of G is an assignment of nonnegative integers to the vertices of G satisfying, $|f(u) - f(v)| \ge diam(G) + 1 - d_G(u, v) \forall u, v \in V(G)$. The **radio number** denoted by rn(G) is the minimum span of a radio labeling for G.

Definition: 1.9

Let G be a graph with q edges and let a and d be positive integers. A labeling f of G is said to be (a,d) - **arithmetic** if the vertex labels are distinct non-negative integers and the edge labels induced by f(x) + f(y) for each xy are a, a+d, a+2d, ..., a+(q-1)d. A graph is called arithmetic if it is (a, d) - arithmetic for some a and d.

Definition: 1.10

A function f is called an **odd mean labeling** of a graph G with p vertices and q edges. If f is an injection from the vertices of G to the set $\{1,3,5,...,2q-1\}$ such that each edge uv is assigned the label $\frac{f(u)+f(v)}{2}$, then the resulting edge labels are distinct. A graph which admits an odd mean labeling is said to be odd mean grah.

Definition: 1.11

A function f is called an **even mean labeling** of a graph G with p vertices and q edges. If f is an injection from the vertices of G to the set $\{2,4,6,...,2q\}$ such that each edge uv is assigned the label $\frac{f(u)+f(v)}{2}$, then the resulting edge labels are distinct. A graph which admits an even mean labeling is said to be even mean graph.

Definition: 1.12

Let G be a (p,q) graph. Let V(G) and E(G) be the vertex set and edge set of G. A function f is called **graceful labeling** on G if $f: V(G) \rightarrow \{0,1,2,...,q\}$ is injective and the induced function $f^*: E(G) \rightarrow \{1,2,...,q\}$ defined as $f^*(uv) = |f(u) - f(v)|$ is injective. The graph which admits graceful labeling is called graceful graph.

Definition: 1.13

Let G = (V,E) be a (p,q) - graph. The graph G is said to be (a,r) - **geometric** if it's vertices can be assigned distinct positive integers so that the values of the edges obtained as the product of the numbers assigned to their end vertices, can be arranged as a geometric progression a, ar, ar^2 , ..., ar^{q-1} .

Definition: 1.14

A **magic** graph is a graph whose edges are labeled by positive integers, so that the sum over the edges incident with any vertex is the same, independent of the choice of vertex; or it is a graph that has such a labeling.

Definition: 1.15

A graph with q edges is called **antimagic** if its edges can be labeled with 1, 2, ..., q so that the sum of the labels of the edges incident to each vertex are distinct.

Definition: 1.16

Duplication of a vertex v of a graph G produces a new graph G' by adding a new vertex v' such that N(v') = N(v). In other words a vertex v' is said to be duplication of v if all the vertices which are adjacent to v in G are also adjacent to v' in G'. For a graph G, the graph obtained by duplication of all the vertices of G is denoted by D(vG).

Theorem: 2.1

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then rn(G) = 4n + 1.

Proof:

Given $G = D(vG^*)$ is the duplication of all the vertices of $K_{1,n}$; n > 1. Therefore, G consist of 2(n+1) vertices and 3n edges is represent in (figure:1) as below

The vertex set of G is denoted by $V(G) = \{v, v', v_i, v_i / 1 \le i \le n\}$ where deg (v) = n, deg (v_i) = 1; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively and diam(G) = 3 Define $f: V(G) \rightarrow N \cup \{0\}$. The label to the vertices of G as below. $f(v_1') = t(t')$ be any non negative integer $f(v_i) = 2(i-1) + t; \ 2 \le i \le n$ $f(v_i) = 2(n+i-1) + t; \ 1 \le i \le n$ (1).... f(v') = t + 1, f(v) = 4n + t + 1In equation (1), $f(v'_1) = t$ is minimum and f(v) = 4n + t + 1 is maximum for any i. $rn(G) = |f(v) - f(v_1)|$ Therefore. \Rightarrow rn(G) = 4n + 1Hence the proof. Theorem: 2.2 Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is an arithmetic graph. **Proof:** Given $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1. Therefore, |V(G)| = 2(n + 1), |E(G)| = 3n and the graph is represented in (figure:1). $V(G) = \{v, v', v_i, v_i/1 \le i \le n\}$ where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v_i are the duplication of v, v_i ; $1 \le i \le n$ respectively. Define $f: V(G) \to \mathbb{N}$ where \mathbb{N} is a set of non negative integers and the vertex labels are as below. f(v) = any non negative integerf(v') = f(v) + 1, $f(v_1) = f(v') + 1$ $f(v_i) = f(v') + 2i - 1; 1 \le i \le n$ $f(v'_i) = f(v') + 2n + i; \ 1 \le i \le n$ The edge labels induced by f(uv) = f(u) + f(v) are as follows. $f(vv_i) = f(v) + f(v') + 2i - 1; 1 \le i \le n$ $f(vv'_i) = f(v) + f(v') + 2n + i; 1 \le i \le n$ $f(v'v_i) = 2(f(v') + i) - 1; 1 \le i \le n$ Using a constant distance 'd' where d be any positive integer, we can label to the vertices of G as f(v)= t ('t' be any non negative integer) f(v') = t + d $f(v_i)$ $= d(2i-1) + t + 1; 1 \le i \le n$ $f(v_i) = d(2n+i) + t + 1; 1 \le i \le n$ In similar, the edges of G also can be labeled as $f(vv_i) = d(2i-1) + 2t + 1; 1 \le i \le n$ $f(vv_i) = d(2n+i) + 2t + 1; 1 \le i \le n$(5)

$$f(v, v_i) = 2(id + t) + 1; 1 \le i \le n$$

The above equation (2), (3), (4), (5) gives the edge values of G are of the form

 $f(E(G)) = \{a, a + d, \dots, a + (q - 1)d\}.$

Therefore, f is an arithmetic labeling.

Hence, G is an (a,d) – arithmetic graph.

Corollary: 2.3

Let $G = D(\nu G^*)$ where $G^* = K_{1,n}$; n > 1, S_a be the minimum span (relative to the vertices) of arithmetic graph with d = 1 then $S_a = rn(G) - n$. **Proof:**

Given, $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 which is represented in (figure:1) and let S_a be the minimum span (relative to the vertices) of arithmetic graph. To prove $S_a = rn(G) - n$

By theorem : 1, rn(G) = 4n + 1By equation (4), f(v) = t is minimum and $f(v_i) = 3n + t + 1$ is maximum for any i (since d = 1). $\mathcal{S}_a = \max|fv_i^{'}) - f(v)|$ Therefore, ⇔ $S_a = 3n + 1$ $S_a + n = 3n + 1 + n$ ⇒ $S_a + n = 4n + 1$ ⇒ ⇒ $S_a + n = rn(G)$ $S_a = rn(G) - n$ ⇒ Hence the proof. Theorem: 2.4 Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is an odd mean graph. **Proof:** Given $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1) and $V(G) = \{v, v', v_i, v', l \le i \le n\}$ where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively. Define $f: V(G) \rightarrow \{1,3,5,\ldots,2q-1\}$ as below Let f(v) = 3 $f(v') = f(v) + 2, f(v_1) = f(v') - f(v) - 1$ $f(v_i) = 6i - 1; 2 \le i \le n$ $f(v_1') = f(v) + f(v') - f(v_1)$ $f(v_i) = 3(2i-1); 2 \le i \le n$ Then, label to the edges of G are $f(vv_1) = \frac{f(v) + f(v_1)}{2}, \quad f(vv_1') = \frac{f(v) + f(v_1')}{2}$ $f(v'v_1) = \frac{f(v') + f(v_1)}{2}$ $f(vv_i) = 3i + 1; 2 \le i \le n$, $f(vv_i) = 3i; 2 \le i \le n$ $f(v'v_i) = 3i + 2; 2 \le i \le n$

The labeling of vertices and edges are satisfies the odd mean labeling.

Hence G is an odd mean graph.

Corollary: 2.5

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1, S_o be the minimum span (relative to the vertices) of odd mean graph then $S_o = rn(G) + (2n - 3)$. **Proof:**

Proof:

Given $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1) and let S_o be the minimum span (relative to the vertices) of odd mean graph. To prove $S_o = rn(G) + 2n - 3$ By theorem:1, rn(G) = 4n + 1Equation (6) $\Rightarrow f(v_1) = 1$ is minimum and $f(v_i) = 6n - 1$ is maximum for all i.

Therefore, $\begin{aligned}
\mathcal{S}_{o} &= \max [f(v_{i}) - f(v_{1})] \\
\Rightarrow & \mathcal{S}_{o} = 6n - 2 \\
\Rightarrow & \mathcal{S}_{o} - (2n - 3) = 6n - 2 - (2n - 3) \\
\Rightarrow & \mathcal{S}_{o} - (2n - 3) = 4n + 1 \\
\Rightarrow & \mathcal{S}_{o} - (2n - 3) = rn(G) \\
\Rightarrow & \mathcal{S}_{o} = rn(G) + (2n - 3) \\
& \text{Hence the proof.}
\end{aligned}$

Theorem: 2.6

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is an even mean graph. **Proof:**

Given $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1) and $V(G) = \{v, v', v_i, v'_i / 1 \le i \le n\}$ where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively. Define $f: V(G) \to \{2,4,6,...,2q\}$ and the label to the vertices of G as below. [VOLUME 6 | ISSUE 1 | JAN. – MARCH 2019] http://ijrar.com/

Corollary: 2.7

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1, S_e be the minimum span (relative to the vertices) of even mean graph then $S_e = rn(G) + (2n - 3)$. **Proof:**

Given $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1) and let S_e be the minimum span (relative to the vertices) of even mean graph.

To prove $S_e = rn(G) + (2n - 3)$ By theorem:1, rn(G) = 4n + 1From equation (8), $f(v_1) = 2$ is minimum and $f(v_i) = 6n$ is maximum for any i. $S_e = \max \left[f(v_i) - f(v_1) \right]$ Therefore, $S_e = 6n - 2$ ⇔ $S_e - (2n - 3) = 6n - 2 - (2n - 3)$ ⇒ $S_e - (2n - 3) = 4n + 1$ ⇔ ⇒ $\mathcal{S}_e - (2n - 3) = rn(G)$ ⇒ $\mathcal{S}_e = rn(G) + (2n - 3)$ Hence proved.

Result: 2.8

Minimum span (relative to the vertices) of odd mean graph is same as the minimum span (relative to the vertices) of even mean graph. **Proof:**

The result is trivial from corollary 2.5 and corollary 2.7.

Theorem: 2.9

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is a graceful graph. **Proof:**

Given, $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 which is represented in (figure:1) and $V(G) = \{v, v', v_i, v'_i / 1 \le i \le n\}$ where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively. Define $f: V(G) \to \{0, 1, 2, ..., q\}$

Define $f: V(G) \rightarrow \{0, 1, 2, \dots, q\}$		
Let $f(v) = 0$ and $f(v') = 1$	٦	
$f(v_i) = 2i; \ 1 \le i \le n$	Ļ	 (10)
$f(v_i) = 2n + i; \ 1 \le i \le n$	[
The edges of G are labeled by	J	
$f^*: E(G) \rightarrow \{1, 2, \dots, q\}$ are as follows.		
$f(vv_i) = 2i; \ 1 \le i \le n$	٦	
$f(vv_i') = 2n + i; \ 1 \le i \le n$	F	 (11)
$f(v'v_i) = 2i - 1; \ 1 \le i \le n$	J	
Clearly the vertices and edges of G are graceful.	2	
Hence G is a graceful graph.		

Corollary: 2.10

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1, S_g be the minimum span (relative to the vertices) of graceful graph then $S_g = rn(G) - (n + 1)$.

Proof:

Given, $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1) and let S_g be the minimum span (relative to the vertices) of graceful graph.

To prove $\hat{S}_g = rn(G) - (n+1)$

By theorem:1, rn(G) = 4n + 1

From equation (10) of theorem: 2.11, f(v) = 0 is minimum and $f(v'_i) = 3n$ is maximum for any i. Therefore, $S_g = 3n$

 $\begin{array}{l} \Leftrightarrow \quad \mathcal{S}_g + (n+1) = 3n + (n+1) \\ \Leftrightarrow \quad \mathcal{S}_g + (n+1) = 4n + 1 \\ \Leftrightarrow \quad \mathcal{S}_g + (n+1) = rn(G) \\ \Leftrightarrow \quad \mathcal{S}_g = rn(G) - (n+1) \end{array}$

Hence proved.

Theorem: 2.11

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is an (a,r) - geometric graph.

Proof:

From (figure:1) represented by the given graph $G = D(vG^*)$ where

 $G^* = K_{1,n}$; n > 1. $V(G) = \{v, v', v_i, v'_i/1 \le i \le n\}$ where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively.

Define $f: V(G) \to \mathcal{M}$ where \mathcal{M} is a set of positive integers and the vertex labeling of G is

 $\begin{cases} (v) &= u; u > 0 \\ f(v') &= ut; u \text{ and } t > 0 \text{ and } u \neq t \\ f(v_1) &= r; r > 0 \text{ and } r \neq u \text{ and } t \\ f(v_i) &= rt^{2(i-1)}; 1 \leq i \leq n \\ f(v_i') &= rt^{(2n+i-1)}; 1 \leq i \leq n \\ The edges of G are labeled as \\ f(vv_i) &= urt^{2(i-1)}; 1 \leq i \leq n \\ f(vv_i) &= urt^{(2n+i-1)}; 1 \leq i \leq n \\ f(vv_i) &= urt^{(2n+i-1)}; 1 \leq i \leq n \\ f(v'v_i) &= urt^{(2i-1)}; 1 \leq i \leq n \\ The edges are labeled in the form of a, ar, ar^2, ..., ar^{q-1} \\ Hence, G is an (a, r) - geometric graph. \end{cases}$ (12)

Theorem: 2.12

Let $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 then G is an antimagic graph. **Proof:**

Given, $G = D(vG^*)$ where $G^* = K_{1,n}$; n > 1 is represented in (figure:1). |V(G)| = 2(n + 1), |E(G)| = 3n.

Define $f: E(G) \rightarrow \{1, 2, ..., q\}$ and the edge labels are as follows:

Case(i)

If n = 2 then $f(vv_i) = i; 1 \le i \le n$ $f(vv_i) = i + 2; 1 \le i \le n$ $f(v'v_i) = i + 4; 1 \le i \le n$

Case(ii)

If $n \equiv 0 \pmod{4}$ then $f(vv'_i) = i; 1 \le i \le n$ $\begin{cases}
n+1 & \text{if } i = 1 \\
n+\frac{n}{4}+1 & \text{if } i = 2
\end{cases}$ Case(iii)

If $n \equiv 1 \pmod{4}$ then $f(vv'_i) = i; 1 \le i \le n$

$$f(vv_i) = \begin{cases} n + \left|\frac{n}{4}\right| & \text{if } i = 1\\ n + \left|\frac{n}{4}\right| + i & \text{; } 2 \le i \le n \end{cases}$$

$$f(v'v_i) = \begin{cases} n+i & \text{; } 1 \le i \le \left(\left|\frac{n}{4}\right| - 1\right)\\ \left(\frac{5(n-1)}{4}\right) + 2 & \text{if } i = \left|\frac{n}{4}\right|\\ 2n+i & \text{; } \left(\left|\frac{n}{4}\right| + 1\right) \le i \le n \end{cases}$$

Case(iv)

If $n \equiv 2 \pmod{4}$ then

$$f(vv_i^{'}) = \begin{cases} i & ; \quad 1 \le i < n \\ \left\lfloor \frac{n}{4} \right\rfloor + n & if \quad i = n \end{cases}$$

$$f(vv_i) = \left\lfloor \frac{n}{4} \right\rfloor + n + i \quad ; \quad 1 \le i \le n$$

$$f(v^{'}v_i) = \begin{cases} n+i-1 & ; \quad 1 \le i \le \left\lfloor \frac{n}{4} \right\rfloor \\ 2n+i & ; \quad \left(\left\lfloor \frac{n}{4} \right\rfloor + 1 \right) \le i \le n \end{cases}$$

Case(v)

If
$$n + 1 \equiv 0 \pmod{4}$$
 then
 $f(vv_i) = i; \ 1 \le i \le n$
 $f(vv_i) = \begin{cases} n+i & ; & 1 \le i \le 2 \\ \binom{n+1}{4} + n+i & ; & 3 \le i \le n \end{cases}$
 $f(v'v_i) = \begin{cases} n+i+2 & ; & 1 \le i \le \binom{n+1}{4} \\ 2n+i & ; & (\binom{n+1}{4} + 1) \le i \le n \end{cases}$

 $V(G) = \{v, v', v_i, v'_i / 1 \le i \le n\}$ Where deg (v) = n, deg $(v_i) = 1$; $v, v_i \in G^*$ and v', v'_i are the duplication of v, v_i ; $1 \le i \le n$ respectively.

The vertex labels are as follows:

Case (1) If n = 2 then $f(v'_i) = 2 + i$, $f(v_i) = 2(i+2)$, $f(v) = n^3 + 2$, $f(v') = n^3 + 3$.

4

Case (2)			
If $n \equiv 0 \pmod{4}$	1) then		
($n + \left(\frac{5n}{4}\right) + 3$	if	i = 1 and $n = 4$
	$3n + \left(\frac{n}{4}\right) + i + 1$	if	i = 2 and n = 4
	$3n + \left(\frac{n}{4}\right) + 2i$;	$3 \le i \le n$ and $n = 4$
	$n + \left(\frac{6n}{4}\right) + 3$	if	i = 2 and n = 8
$f(v_i) = \langle$	2(n+1) + i	if	i = 1 and n > 4
	$2(n+1) + (\frac{n}{4}) + i$	if	i = 2 and n > 8
	$2(n+i) + \left(\frac{n}{4}\right) + 1$;	$3 \le i \le \left(\frac{n}{4} - 1\right)$
	$n + \left(\frac{6n}{4}\right) + i + 2$;	$i = \frac{n}{4}$ and $n > 8$
l	$3n + \left(\frac{n}{4}\right) + 2i$;	$\left(\frac{n}{4}+1\right) \le i \le n \text{ and } n >$

$$f(v'_i) = i; 1 \le i \le n$$

$$f(v) = \left(\frac{3n(3n+1)}{4}\right) - 1$$

$$f(v') = \left(\frac{3n(3n+1)}{4}\right) + 1$$

If $n \equiv 1 \pmod{4}$ then

$$f(v_i) = \begin{cases} n + \left\lfloor \frac{n}{4} \right\rfloor + \frac{5(n-1)}{4} + 2 & \text{if } i = 1 \text{ and } n = 5\\ 2n + \left\lfloor \frac{n}{4} \right\rfloor + i & \text{if } i = 1 \text{ and } n > 5\\ n + \left\lfloor \frac{n}{4} \right\rfloor + \left\lfloor \frac{5(n-1)}{4} \right\rfloor + i + 2 & \text{if } i = \left\lfloor \frac{n}{4} \right\rfloor \text{ and } n > 5\\ 2n + \left\lfloor \frac{n}{4} \right\rfloor + 2i & \text{; } 2 \le i \le \left(\left\lfloor \frac{n}{4} \right\rfloor - 1 \right)\\ 3n + 2i + \left\lfloor \frac{n}{4} \right\rfloor & \text{; } \left(\left\lfloor \frac{n}{4} \right\rfloor + 1 \right) \le i \le n \end{cases}$$

$$f(v'_{i}) = i; 1 \le i \le n$$

$$f(v) = \left(\frac{3n(3n+1)}{4}\right) - 1$$

$$f(v') = \left(\frac{3n(3n+1)}{4}\right) + 1$$

Case (4)

If
$$\mathbf{n} \equiv 2 \pmod{4}$$
 then

$$\begin{cases} 2n + \left\lfloor \frac{n}{4} \right\rfloor + 2i - 1 & ; \quad 1 \le i \le \left\lfloor \frac{n}{4} \right\rfloor \\ 3n + 2i + \left\lfloor \frac{n}{4} \right\rfloor & ; \quad \left(\left\lfloor \frac{n}{4} \right\rfloor + 1 \right) \le i \le n \end{cases}$$

$$f(v'_i) = \begin{cases} i & ; \quad 1 \le i < n \\ \left\lfloor \frac{n}{4} \right\rfloor + n & if \quad i = n \end{cases}$$

$$f(v) = \left\lfloor \frac{3n(3n+1)}{4} \right\rfloor$$
$$f(v') = \left\lfloor \frac{3n(3n+1)}{4} \right\rfloor + 1$$

case (J)			
If	$n + 1 \equiv 0 \pmod{4}$ then		
	(2(n+i+1))	if	i = 1 and $n = 3$
	3n + 2i	if	i = 2 and n = 3
	$\left(\frac{n+1}{4}\right) + 3n + 2i$	if	i = 3 and $n = 3$
$f(v_i) = \langle$	2(n+i+1)	;	$1 \le i \le 2$ and $n > 3$
	$\left(\frac{n+1}{4}\right) + 2(n+i+1)$;	$3 \le i \le \frac{n+1}{4}$ and $n > 3$
	$\left(\frac{n+1}{4}\right) + 3 n + 2i$;	$\left(\frac{n+1}{4}+1\right) \le i \le n \text{ and } n > 3$

$$f(v_i^{'}) = i; \ 1 \le i \le n$$

Case(5)

$$f(v) = \left\lfloor \frac{3n(3n+1)}{4} \right\rfloor$$
$$f(v') = \left\lfloor \frac{3n(3n+1)}{4} \right\rfloor + 1$$

The labeling of vertices and edges are satisfies the antimagic labeling. Hence G is an antimagic graph.

REFERENCE

- 1. Harary .F, Graph Theory, Narosa Publishing House (1969).
- 2. Hegde .S.M and Shankaran .P, Geometric Labeled Graphs, AKCE J. Graphs. Combin., 5, No. 1 (2008), pp. 83-97.
- 3. Joseph .A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2013).
- 4. Revathi .N, Vertex Odd Mean And Even Mean Labeling Of Some Graph, IOSR Journal Of Mathematics, Volume 11, Issue 2 Ver .IV (Mar-Apr.2015) PP 70-74
- 5. Rosa. A, On Certain Valuations of The Vertices of A Graph Theory of Graphs (Internet, Symposium, Rome, July 1966), Gordon and Dunod Paris (1967).
- 6. Sampathkumar.E, On Buplicate Graphs, Journal of The Indian Math.Soc, 37(1973) 285-293.
- 7. Stephen Joh . B and Jovit Vinish Melma. G., Arithmetic Labeling of C_m × P_n and P_m × P_n, International Journal Of Mathematical Archive, 9(4), 2018.
- 8. Tao Ming Wang, Guang Hui Zhang, On Antimagic Labeling Of Odd Regular Graphs, International Workshop On Combinatorial Algorithms, 162-168, 2012.
- 9. Uma. R and Murugesan. N, Graceful Labeling Of Some Graphs And Their Subgraphs, Asian Journal Of Current Engineering and Maths 1:6 Nov Dec (2012) 367-370.
- 10. Vaidya. S.K and Bantva. D.D Radio Number For Total Graph Of Path, Hindawi Publishing Corporation, ISRN Combinatorics, Volume 2013, Article ID 326038.