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 ABSTRACT    In 1948, M. Ward [2] introduced this concept of an elliptic divisibility sequence and studied 
arithmetic properties of such sequences. He also studied the relation of elliptic divisibility sequences with elliptic curves 
and elliptic functions. In this paper we give some new results between elliptic curves, elliptic divisibility sequences and 
elliptic functions. 
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2. Introduction 
2.1. Elliptic Divisibility Sequence 
An elliptic divisibility sequence  𝑊𝑛  is a sequence of integers satisfying the non-linear recurrence 

𝑊𝑚+𝑛𝑊𝑚−𝑛 = 𝑊𝑚+1𝑊𝑚−1𝑊𝑛
2 −𝑊𝑛+1𝑊𝑛−1𝑊𝑚

2 
for all 𝑚 ≥ 𝑛 ≥ 1 and such that 𝑊𝑛 ∣ 𝑊𝑚  whenever 𝑛 ∣ 𝑚. 
The following are some examples of an elliptic divisibility sequences. 

1 𝑊𝑛 = (𝑛/3), where (𝑛/𝑝) is the Legendre symbol. 
2  𝑊𝑛 = 1,1, −1,1,2, −1, −3,−5,7, −4,−23,29,59,129, −314,−65,1529, −3689,… 
3  𝑊𝑛 = 1,1,2,1, −7, −16,−57,−113,670,3983,23647,140576,−833503,−14871471 −

147165662,−2273917871,11396432249,… 
Theorem 1.1 (Ward). Let  𝑊𝑛  be a non-singular, non-degenerate elliptic divisibility sequence. Then there is 
a lattice Λ ⊂ ℂ and a complex number 𝑧 ∈ ℂ such that 

𝑊𝑛 =
𝜎(𝑛𝑧; Λ)

𝜎(𝑧; Λ)𝑛
2  for all 𝑛 ≥ 1. 

2.2. Weierstrass 𝜎-function 
Definition 1.1. The Weierstrass 𝜎-function (associated to a lattice Λ ) is defined as 

𝜎(𝑧) = 𝜎(𝑧; Λ): = 𝑧  
𝜔∈Λ
𝜔≠0

 1 −
𝑧

𝜔
 𝑒

𝑧
𝜔

+
1
2
 
𝑧
𝜔
 

2

, 

where 𝑧 is a complex variable. The Weierstrass 𝜎-function is of much importance to us because an elliptic 
divisibility sequence can be parametrized using it. Therefore we will study the properties of Weierstrass 𝜎-
function in detail. We start with the following proposition. 
Proposition 1.1. Let Λ ⊂ ℂ be a fixed lattice. Let 𝜎(𝑧) be the corresponding Weierstrass 𝜎-function. Then the 
following statements holds. 
(a) The infinite product (3) for 𝜎(𝑧) defines a holomorphic function on ℂ. The function 𝜎(𝑧) has simple 
zeros at each lattice point and no other zeros. 
(b) For all 𝑧 ∈ ℂ ∖ Λ we have 

𝑑2

𝑑𝑧2
log⁡𝜎(𝑧) = −℘(𝑧) 

(c) For all 𝑧 ∈ ℂ and for every 𝜔 ∈ Λ there are constants 𝑎, 𝑏 ∈ ℂ, depending on 𝜔, such that 
𝜎(𝑧 + 𝜔) = 𝑒𝑎𝑧+𝑏𝜎(𝑧).  

(d) The function 𝜎(𝑧) is an odd function (i.e., 𝜎(−𝑧) = −𝜎(𝑧) ). 
Proof. (a) See [6] Chapter 6, Lemma 3.3]. 
(b) Taking logarithm in (3) yields 

log⁡𝜎(𝑧) = log⁡𝑧 +   
𝜔∈Λ
𝜔≠0

 log⁡ 1 −
𝑧

𝜔
 +

𝑧

𝜔
+

1

2
 
𝑧

𝜔
 

2

 . 

Using (a) we can differentiate the above series, twice with respect to 𝑧, to get 
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𝑑

𝑑𝑧
log⁡𝜎(𝑧) =

1

𝑧
+   

𝜔∈Λ
𝜔≠0

 
1

𝑧 − 𝜔
+

1

𝜔
+

𝑧

𝜔2
  

Differentiating again with respect to 𝑧 yields 
𝑑2

𝑑𝑧2
log⁡𝜎(𝑧) = −

1

𝑧2
−  

𝜔∈Λ
𝜔≠0

 
1

(𝑧 − 𝜔)2
−

1

𝜔2
 = −℘(𝑧). 

(c) Using the fact that 𝜚(𝑧) is periodic, from part (b) we have 
𝑑2

𝑑𝑧2
log⁡𝜎(𝑧 + 𝜔) = −℘(𝑧 + 𝜔) = −℘(𝑧) =

𝑑2

𝑑𝑧2
log⁡𝜎(𝑧). 

Integrating, last equation, twice with respect to 𝑧 yields 
log⁡𝜎(𝑧 + 𝜔) = log⁡𝜎(𝑧) + 𝑎𝑧 + 𝑏,  

where 𝑎 and 𝑏 are constants. The result follows by exponentiating the above equation. 
(d) We have 

𝜎(−𝑧) = −𝑧  
𝜔∈Λ
𝜔≠0

 1 +
𝑧

𝜔
 𝑒

−𝑧
𝜔

+
1
2
 
−𝑧
𝜔

 
2

. 

The above expression is equal to −𝜎(𝑧), since the product is taken over all the non-zero lattice points 
 

3. q-Expansion of the Weierstrass 𝜎-function 
Let 𝜏 ∈ ℍ, where ℍ = {𝑧 ∈ ℂ; Im⁡(𝑧) > 0} is the upper half-plane. Let Λ𝜏 = ℤ𝜏 + ℤ be a normalized lattice 
(i.e. one of the generators is 1). We will use the notations ℘ 𝑧; Λ𝜏 = ℘(𝑧, 𝜏) and 𝜎 𝑧; Λ𝜏 = 𝜎(𝑧, 𝜏). We note 
that ℘ and 𝜎 can be considered as functions of two variables (𝑧, 𝜏) ∈ ℂ × ℍ. Since 1 ∈ Λ𝜏 , the ℘-function 
satisfies the relation ℘(𝑧 + 1, 𝜏) = ℘(𝑧, 𝜏). This means that we can expand ℘ as Fourier series in the 
variable 𝑢 = e2𝜋𝑖𝑧 . Similarly, since Λ𝜏+1 = Λ𝜏 , the ℘-function satisfies ℘(𝑧, 𝜏 + 1) = ℘(𝑧, 𝜏). Thus as a 
function of 𝜏, the function ℘ also has a Fourier expansion in terms of 𝑞 = e2𝜋𝑖𝜏 . More precisely, let 

𝑢 = 𝑒2𝜋𝑖𝑧  and 𝑞 = 𝑒2𝜋𝑖𝜏 , 
and let 

𝑞ℤ =  𝑞𝑘 ; 𝑘 ∈ ℤ  
be the cyclic subgroup of the multiplicative group ℂ∗ generated by 𝑞. Then there is a complex analytic 
isomorphism 

ℂ/Λ𝜏 ⟶
∼

ℂ∗/𝑞𝑍 ,

𝑧 ⟼ 𝑒2𝜋𝑖𝑧 .
 

Using this transformation, the following theorem gives the formula for the 𝜎-function in ℂ∗/𝑞𝑍 . 
Theorem 1.1: The 𝑞-product expansion for the 𝜎-function is given by 

𝜎(𝑢, 𝑞) = −
1

2𝜋𝑖
𝑒

1
2
𝜂𝑧2−𝜋𝑖𝑧 (1 − 𝑢)  

𝑚≥1

 1 − 𝑞𝑚𝑢  1 − 𝑞𝑚𝑢−1 

 1 − 𝑞𝑚  2
. 

Proof. See [7, Chapter I, Theorem 6.4 ] 
In [1] by employing Theorem[1.1] Silverman and Stephens proved the following result regarding the sign of 
an EDS. 
Theorem 1.2: Let  𝑊𝑛  be an unbounded nonsingular elliptic divisibility sequence. Then possibly after 
replacing  𝑊𝑛  by the related sequence  (−1)𝑛𝑊𝑛 , there is an irrational number 𝛽 ∈ ℝ so that the sign of 
𝑊𝑛  is given by one of the following formulas: 

Sign⁡ Wn = (−1)⌊𝑛𝛽 ⌋  for all 𝑛 ,

Sign⁡ Wn =  
(−1)⌊𝑛𝛽 ⌋+𝑛/2 ; if 𝑛 is even ,

(−1)(𝑛−1)/2 ;  if 𝑛 is odd ,
  

where ⌊. ⌋ denotes the greatest integer function. 
Proof. See [1,Theorem 4 ]. 
 

4. Elliptic Nets 
The concept of elliptic divisibility sequences has been generalized as follows. 
Definition 2.1. Let 𝐴 be a finitely-generated free abelian group, and let 𝑅 be an integral domain. An elliptic 
net is a map 𝑊: 𝐴 → 𝑅 with 

𝑊(0) = 0, 
and such that for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐴, 
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𝑊(𝑝 + 𝑞 + 𝑠)𝑊(𝑝 − 𝑞)𝑊(𝑟 + 𝑠)𝑊(𝑟)
+ 𝑊(𝑞 + 𝑟 + 𝑠)𝑊(𝑞 − 𝑟)𝑊(𝑝 + 𝑠)𝑊(𝑝)

+𝑊(𝑟 + 𝑝 + 𝑠)𝑊(𝑟 − 𝑝)𝑊(𝑞 + 𝑠)𝑊(𝑞) = 0

 

If 𝐴 = 𝑅 = ℤ, this definition makes  𝑊𝑛  an elliptic divisibility sequence. The rank of en elliptic net is defined 
to be the rank of free abelian group 𝐴. 
Similar to division polynomials corresponding to 𝑛𝑃, where 𝑃 is a point on an elliptic curve 𝐸. We can define 
net polynomials for 𝑛1𝑃1 + 𝑛2𝑃2 + ⋯+ 𝑛𝑟𝑃𝑟 , where 𝑃1 , 𝑃2 , … , 𝑃𝑟 , are 𝑟 points on 𝐸. In order to do this we 
define a function that generalizes 𝑓𝑛(𝑧) defined in Section 2.4. 
4.1. Net Polynomials Over ℂ 
Let 𝐸 be an elliptic curve over ℂ. We will define rational functions Ωv : 𝐸𝑛 → ℂ for all 𝐯 ∈ ℤ𝑛  such that for 
each 𝐏 ∈ 𝐸𝑛 , the map 

𝑊𝐸,P : ℤ𝑛 → ℂ, 𝐯 ↦ Ωv (𝐏) 

is an elliptic net. More precisely we have the following definition. 
Definition 2.2. Fix a lattice Λ ⊂ ℂ corresponding to an elliptic curve 𝐸. For 𝐯 =  𝑣1 , 𝑣2, … , 𝑣𝑛 ∈ ℤ𝑛 , define a 
function Ωv  on ℂ𝑛  in variables z =  𝑧1 , 𝑧2, … , 𝑧𝑛  as follows: 

Ω𝐯(𝐳; Λ) =
𝜎 𝑣1𝑧1 + 𝑣2𝑧2 + ⋯+ 𝑣𝑛𝑧𝑛 ; Λ 

  𝑛
𝑖=1  𝜎 𝑧𝑖 ; Λ 

2𝑣𝑖
2−  𝑛

𝑗=𝑖  𝑣𝑖𝑣𝑗   1≤𝑖<𝑗≤𝑛  𝜎 𝑧𝑖 + 𝑧𝑗 ; Λ 
𝑣𝑖𝑣𝑗

. 

In special case of 𝑛 = 1 for each 𝑣 ∈ ℤ, we have a function Ω𝑣  on ℂ in the variable z, we have 

Ω𝑣(𝑧; Λ) =
𝜎(𝑣𝑧, Λ)

𝜎(𝑧, Λ)𝑣
2 . 

In case of 𝑛 = 2, for each pair  𝑣1, 𝑣2 ∈ ℤ × ℤ, the function Ω 𝑣1 ,𝑣2  on ℂ × ℂ in variables 𝑧1  and 𝑧2 is 

Ω 𝑣1 ,𝑣2 
 𝑧1 , 𝑧2; Λ =

𝜎 𝑣1𝑧1 + 𝑣2𝑧2; Λ 

𝜎 𝑧1; Λ 𝑣1
2−𝑣1𝑣2𝜎 𝑧1 + 𝑧2; Λ 𝑣1𝑣2𝜎 𝑧2; Λ 𝑣2

2−𝑣1𝑣2
. 

We can show that Ωv  satisfies (9𝑝. Thus we have the following result. 
Theorem 2.1: Fix a lattice Λ ⊂ ℂ corresponding to an elliptic curve 𝐸. Fix 𝑧1 , 𝑧2, … , 𝑧𝑛 ∈ ℂ. Then for 
𝐯 =  𝑣1 , 𝑣2 , … , 𝑣𝑛 ∈ ℤ𝑛 , the function 𝑊: ℤ𝑛 → ℂ defined by 

𝑊(𝐯) = Ω𝐯 𝑧1, 𝑧2 , … , 𝑧𝑛 ; Λ  
is an elliptic net. 
Proof. See [3, Theorem 3.7 ]. 
Similar to the case of elliptic divisibility sequences, there is a relationship between elliptic nets and elliptic 
curves. In [3] this relationship is made explicit using curve-net theorem. 
 

5. The Signs in an Elliptic Net 
In this thesis my plan is to generalize Theorem 1.2 to elliptic nets. I am aiming to find a formula for sign of an 
elliptic net. In order to do that we need to generalize the 𝑞-expansion for the Weierstrass 𝜎-function for 
𝐳 =  𝑧1 , 𝑧2, … , 𝑧𝑛  by the transformation used in section 3 . For simplicity, we start by generalizing the 𝑞-
expansion for 𝜎 in two variables  𝑧1, 𝑧2  and later we will try to extend this result for 𝑛 variables. 
Proposition 3.1. Let 𝐯 =  𝑣1 , 𝑣2 ∈ ℤ × ℤ and 𝐳 =  𝑧1, 𝑧2 ∈ ℂ × ℂ. Let 𝑢1 = 𝑒2𝜋𝑖𝑧1 , 𝑢2 = 𝑒2𝜋𝑖 𝑧2 , and 𝑞 = 𝑒2𝜋𝑖𝜏 . 
Then 

𝜎 𝑣1𝑧1 + 𝑣2𝑧2 = −
1

2𝜋𝑖
exp⁡ 

1

2
𝜂 𝑣1𝑧1 + 𝑣2𝑧2 

2 − 𝜋𝑖 𝑣1𝑧1 + 𝑣2𝑧2  𝜃 𝑢1
𝑣1𝑢2

𝑣2 , 𝑞 , 

with 

𝜃 𝑢1
𝑣1𝑢2

𝑣2 , 𝑞 =  1 − 𝑢1
𝑣1𝑢2

𝑣2   

𝑚≥1

 1 − 𝑞𝑚𝑢1
𝑣1𝑢2

𝑣2  1 − 𝑞𝑚𝑢1
−𝑣1𝑢2

−𝑣2 

 1 − 𝑞𝑚 2
. 

Since for  𝑣1, 𝑣2 ∈ ℤ × ℤ, the function Ω 𝑣1 ,𝑣2  on ℂ × ℂ in variables 𝑧1  and 𝑧2 is 

Ω 𝑣1 ,𝑣2 
 𝑧1 , 𝑧2; Λ =

𝜎 𝑣1𝑧1 + 𝑣2𝑧2; Λ 

𝜎 𝑧1; Λ 𝑣1
2−𝑣1𝑣2𝜎 𝑧1 + 𝑧2; Λ 𝑣1𝑣2𝜎 𝑧2; Λ 𝑣2

2−𝑣1𝑣2
, 

therefore after substituting the value of 𝜎 we should get the following expression 
Conjecture 3.1. Let 𝐯 =  𝑣1 , 𝑣2 ∈ ℤ × ℤ and 𝐳 =  𝑧1, 𝑧2 ∈ ℂ × ℂ. Let 𝑢1 = 𝑒2𝜋𝑖𝑧1 , 𝑢2 = 𝑒2𝜋𝑖𝑧2 , and 𝑞 = 𝑒2𝜋𝑖𝜏 . 
Then 

Ω 𝑣1 ,𝑣2 
 𝑧1, 𝑧2; Λ = 𝛾𝑣1

2+𝑣2
2−𝑣1𝑣2−1𝑢1

 𝑣1
2−𝑣1 /2

𝑢2

 𝑣2
2−𝑣2 /2 𝜃 𝑢1

𝑣1𝑢2
𝑣2 , 𝑞 

𝜃 𝑢1, 𝑞 𝑣1
2−𝑣1𝑣2𝜃 𝑢2, 𝑞 𝑣2

2−𝑣1𝑣2𝜃 𝑢1𝑢2 
𝑣1𝑣2

, 

where 𝛾 is a constant. 
Proof. Let 𝐯 =  𝑣1 , 𝑣2 ∈ ℤ × ℤ and 𝐳 =  𝑧1, 𝑧2 ∈ ℂ × ℂ. Let 𝑢1 = 𝑒2𝜋𝑖𝑧1 , 𝑢2 = 𝑒2𝜋𝑖 𝑧2 , and 𝑞 = 𝑒2𝜋𝑖𝜏 . Then 
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𝜎 𝑣1𝑧1 + 𝑣2𝑧2 = −
1

2𝜋𝑖
𝑒

1
2
𝜂 𝑣1𝑧1+𝑣2𝑧2 

2−𝜋𝑖  𝑣1𝑧1+𝑣2𝑧2  1 − 𝑢1
𝑣1𝑢2

𝑣2   

𝑚≥1

 
 1 − 𝑞𝑚𝑢1

𝑣1𝑢2
𝑣2  1 − 𝑞𝑚𝑢1

−𝑣1𝑢2
−𝑣2 

 1 − 𝑞𝑚 2
.

𝜎 𝑧1 + 𝑧2, 𝑞 = −
1

2𝜋𝑖
𝑒

1
2
𝜂 𝑧1+𝑧2 

2−𝜋𝑖  𝑧1+𝑧2  1 − 𝑢1𝑢2   

𝑚≥1

 
 1 − 𝑞𝑚𝑢1𝑢2  1 − 𝑞𝑚𝑢1

−1𝑢2
−1 

 1 − 𝑞𝑚  2
.

 

Therefore, 

Ω 𝑣1 ,𝑣2 
 𝑧1, 𝑧2; Λ =

(−1/2𝜋𝑖)exp⁡ 1/2𝜂 𝑣1
2𝑧1

2 + 𝑣2
2𝑧2

2 + 2𝑣1𝑣2𝑧1𝑧2 − 𝜋𝑖 𝑣1𝑧1 + 𝑣2𝑧2  

 (−1/2𝜋𝑖)exp⁡ 1/2𝜂𝑧1
2 − 𝜋𝑖𝑧1  

𝑣1
2−𝑣1𝑣2 (−1/2𝜋𝑖)exp⁡ 1/2𝜂𝑧2

2 − 𝜋𝑖𝑧2  
𝑣2

2−𝑣1𝑣2
1

×
 (−1/2𝜋𝑖)exp⁡ 1/2𝜂 𝑧1

2 + 𝑧2
2 − 𝜋𝑖 𝑧1 + 𝑧2   

𝑣1𝑣2

𝜃 𝑢1
𝑣1𝑢2

𝑣2 , 𝑞 

𝜃 𝑢1 , 𝑞 𝑣1
2−𝑣1𝑣2𝜃 𝑢2, 𝑞 𝑣2

2−𝑣1𝑣2𝜃 𝑢1𝑢2 
𝑣1𝑣2

 

The part without the function theta can be written as 

(−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1
exp⁡ 1/2𝜂 𝑣1

2𝑧1
2 + 𝑣2

2𝑧2
2 + 2𝑣1𝑣2𝑧1𝑧2 − 𝜋𝑖 𝑣1𝑧1 + 𝑣2𝑧2  

exp⁡ 1/2𝜂𝑣1
2𝑧1

2 − 1/2𝜂𝑣1𝑣2𝑧1
2 − 𝜋𝑖𝑣1

2𝑧1 + 𝜋𝑖𝑣1𝑣2𝑧1 

×
1

exp⁡ 1/2𝜂𝑣2
2𝑧2

2 − 1/2𝜂𝑣1𝑣2𝑧2
2 − 𝜋𝑖𝑣2

2𝑧2 + 𝜋𝑖𝑣1𝑣2𝑧2 

×
1

exp⁡ 1/2𝜂𝑣1𝑣2𝑧1
2 + 1/2𝜂𝑣1𝑣2𝑧2

2 − 𝜋𝑖𝑣1𝑣2𝑧1 − 𝜋𝑖𝑣1𝑣2𝑧2 + 𝜂𝑣1𝑣2𝑧1𝑧2 

 

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1
exp⁡ −𝜋𝑖 𝑣1𝑧1 + 𝑣2𝑧2  

exp⁡ −𝜋𝑖 𝑣1
2𝑧1 + 𝑣2

2𝑧2  

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1exp⁡ 𝜋𝑖 𝑣1
2 − 𝑣1 𝑧1 + 𝜋𝑖 𝑣2

2 − 𝑣2 𝑧2 

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1exp⁡ 𝜋𝑖 𝑣1
2 − 𝑣1 𝑧1 + exp⁡ 𝜋𝑖 𝑣2

2 − 𝑣2 𝑧2 

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1exp⁡ 
2𝜋𝑖 𝑣1

2 − 𝑣1 𝑧1

2
 + exp⁡ 

2𝜋𝑖 𝑣2
2 − 𝑣2 𝑧2

2
 

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1 𝑒2𝜋𝑖 𝑧1  𝑣1
2−𝑣1 /2 𝑒2𝜋𝑖 𝑧2  𝑣2

2−𝑣2 /2

= (−2𝜋𝑖)𝑣1
2+𝑣2

2−𝑣1𝑣2−1 𝑢1 
 𝑣1

2−𝑣1 /2 𝑢2 
 𝑣2

2−𝑣2 /2

 

Therefore 

Ω 𝑣1 ,𝑣2 
 𝑧1, 𝑧2; Λ = 𝛾𝑣1

2+𝑣2
2−𝑣1𝑣2−1𝑢1

 𝑣1
2−𝑣1 /2

𝑢2

 𝑣2
2−𝑣2 /2 𝜃 𝑢1

𝑣1𝑢2
𝑣2 , 𝑞 

𝜃 𝑢1, 𝑞 𝑣1
2−𝑣1𝑣2𝜃 𝑢2, 𝑞 𝑣2

2−𝑣1𝑣2𝜃 𝑢1𝑢2 
𝑣1𝑣2

, 

My first goal in this research will be to prove the above conjectures and later use them to calculate the sign 
of elliptic nets following the strategy of Silverman-Stephens. 
The result of this thesis will give a better understanding of elliptic nets and will lead us in better 
understanding of the structure of the rational points on an elliptic curve. 
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