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 ABSTRACT    This paper deals with the study of  Haar-Vilenkin wavelet which is also known as 
generalized Haar wavelets. Haar wavelet was introduced by Hungarian mathematician Alfred Haar. 
Haar-Vilenkin system was introduced around 1947.  This system forms a wavelet system and we have  
proved the properties of this system. We have also introduced a Special Type of Multiresolution analysis 
generated by Haar-Vilenkin wavelet which is a special case of matrix multiresolution analysis. In this 
paper the different properties of Haar-Vilenkin wavelets and scaling function are discussed.  Their 
representation in discrete form with the construction of Haar-Vilenkin matrices is also shown here and 
also expanded a function in Haar-Vilenkin wavelet series. 
Keywords: Wavelets, Haar-Vilenkin system, scaling function, multiresolution analysis, matrices. 
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We have introduced the concept of Haar-Vilenkin wavelet and Haar-Vilenkin scaling function and have 
studied the basic properties of Haar-Vilenkin wavelet series and coefficients in [8]. Haar-Vilenkin 
wavelet is a generalization of Haar wavelet.  Haar wavelet basis is the first example of an orthonormal 
wavelet basis. Haar basis functions are step functions with jump discontinuities [5]. Haar wavelet basis 
provides a very efficient representation of functions that consist of smooth, slowly varying segments 
punctuated by sharp peaks and discontinuities. Haar system is an orthonormal system such that each 
continuous function on [0, 1] has a uniformly convergent Fourier series with respect to this 
system. 
 

The Haar function on real line R is defined as h(x)  =  {

1,   x ∈ [0, 1/2)

−1,   x ∈ [1/2, 1)

0,           otherwise

 

 
The system {hj,k(x)}j,kєZ  where hj,k(x) = h(2jx − k), j, k єZ, on taking the translations and dilations of 
h(x), is defined as the Haar system on R . On the real line the Haar scaling function is p(x) = 
χ[0,1)(x). The system of functions { p j , k (x)}j,kєZ,  is referred to as the system of Haar scaling 

functions. The properties of Haar system have been studied. It has been proved that the system 
{pj,k(x)}j,kєZ forms an orthonormal system in L2(R) [2, 17, 19].  The family    {pj,k}j,kєZ is also 
associated with multiresolution analysis. 
 
Theorem 1.1 [19] The system {hj,k(x)}j,kєZ forms an orthonormal basis in L2(R ). 

The convergence of the system  in Lp[0, 1] for 1 ≤ p < ∞ has been shown by Schauder in[12]. The 
comparison of Fourier series of a function f є  L2(R) and its expansion with respect to the Haar 
system has been extensively studied.  Behavior of Haar coefficients are also studied. 
 
Behavior of Haar coefficients near jump discontinuities The following estimates are obtained in[17].     
Suppose f (x) is a function defined on [0, 1] with a jump discontinuity at xϵ (0,1) and   continuous 
at all other points in [0, 1]. Let us assume that the function f (x) is C2 on the intervals [0, x0] and 

[x0, 1]. Now we have two possibilities, either 𝑥0ϵ [
k

2j
, k+1
2j
[or 𝑥0 does not lie in [k

2j
, k+1
2j
[. 

 

Case I If  𝑥0ϵ [
k

2j
, k+1
2j
[  , then, |< f, pj,k >| ≈  

1

4
 |f(x0

−) − f(x0
+)|2−j/2 . 

 

Case II If   𝑥0 does not lie in [k
2j
, k+1
2j
[, then   |< f, pj,k >| ≈  

1

4
 |f′(xj,k)|2

−3j/2 . 
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Thus we see that the decay of  <f, pj,k> for large j is considerably slower if  𝑥0ϵ [
k

2j
, k+1
2j
[.  

That is large coefficient in Haar expansion of a function f (x) that persist for all scales  

suggest the presence of jump discontinuity in the intervals [k
2j
, k+1
2j
[ corresponding to the  

large coefficients.  
 
It may be observed that Haar function was introduced in 1910 [5], Walsh function in 1923[18] and 
Haar type Vilenkin system in 1947, see for e.g.[16, 15, 13]. Certain properties of multi-dimensional 
generalized Haar type Fourier series have been investigated[14]. In the recent years various 
extensions and concepts related to Haar wavelet have been studied, see e.g.[1, 3, 4, 7, 14] . The matrix 
form of Haar wavelets, the integrals related to it and the solution of ODE’s using Haar Wavelet 
coefficients is studied in [6]. In this chapter we have studied the properties of Haar-Vilenkin Wavelet 
series. 
In this paper  the concept of Haar-Vilenkin wavelets is recalled in section 2 and its various properties 
have been discussed. The concept of a special type of multiresolution analysis which generates Haar-
Vilenkin wavelets is studied in section 3. Integrals related to Haar-Vilenkin wavelets have been 
evaluated in section 4 and wavelets have been represented in matrix form and general procedure for 
expanding a function or a signal in Haar-Vilenkin wavelet series is explained. 
 
2   Haar-Vilenkin Wavelet 
In this section we are recalling the system of Haar-Vilenkin wavelets studied in [8]:  
The following system which is a generalization of Haar system is connected with the name of 
Vilenkin. Very often it is termed as a generalized Haar system or a Haar type Vilenkin system. 
Let m = (mk, k єN) be a sequence of natural numbers such that mk ≥ 2, N denotes the set of non-
negative integers. Let M0 = 1 and Mk =mk−1Mk−1,    k є P.  Let P denotes the set of positive 
integers and let k є  P can be written as 

k = Mn + r(mn − 1) + s − 1,        (2.1) 
where n є N, r = 0, 1, . . . , Mn − 1 and s = 1, 2, . . . , mn − 1. This expression is unique for each kєP. Let 
us write an arbitrary element tє[0,1) in the form 

 


= +

=
0 1

)0(,
k

kk
k

k mt
M

t
t

                                                                                          (2.2) 

 
It may be noted that there exists two such expressions (2.2), for so called m- adic rational numbers. In 
such cases we use the expression which contains only a finite number of terms different from zero. 

Define the function system (hk, k є N) by h0 = 1 and 






 +


=

otherwise

M

r
t

M

r

m

ist
M

th
nnn

n
n

k

0

12
exp

)(


   

(2.3)
 

 
This system can be extended to R by periodicity of period 1: h k(t + 1) = hk(t),  tє [0, 1). It can be 
checked that {hk(t)} is a complete orthonormal system in L2( R). 
Certain properties of this system have been recently studied [8]. For k є  P and t є  [0, 1)  
as defined in (2.1) and (2.2) the Haar -Vilenkin scaling function is defined as: 

   






 +


=

otherwise

M

r
t

M

r
M

tp
nn

n
k

0

1
,

)(

                                                                                            (2.4) 

The system Zbaba t ,, )}({  is  Haar-Vilenkin scaling functions system where 

 
).()( 2/

, btmpmt a

nk

a

nba −=
 

We have studied the basic properties of Haar-Vilenkin system in [8]. We have proved the 
orthogonality of Haar-Vilenkin wavelet, convergence of Haar- Vilenkin wavelet series and 
properties of Haar-Vilenkin wavelet coefficients. We have introduced a multiresolution analysis 
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M

n 

  

where translation and dilation are taken by b/Mn where b lies in Z. The system {ψa,b(t)} where a,b 
lie in Z is referred as Haar-Vilenkin system, where ψa,b(t) = ma/2hk(ma t − b). 
 
 
Remark 2.1  1. Haar system is a special case of H a a r -Vilenkin system for mn = 2 for all n є N. 

2. Given any a ∈ Z, the collection of scale a Haar-Vilenkin scaling functions is an orthonormal 
system on R. 
3.  For k=1, hk(t) is well known mother Haar wavelet. 

 
Approximation Operator in Context of Haar-Vilenkin Wavelets  
 
Definition 2.1 For each a lies in Z define the approximation operator Pa on the 
functions f in L2( R) as                    𝑃𝑎𝑓(𝑥)  =  ∑ < 𝑓, ∅

𝑎,
𝑏
𝑀𝑛

> ∅
𝑎,

𝑏
𝑀𝑛

𝑏  . 

We have proved the following facts about the operator Pa in[8]:    (2.5) 
 
 
Theorem 2.1  1. For each aєZ, Pa is linear, given f(x), g(x)є L2(R ) and α, β ϵ C 
𝑃𝑎(𝛼𝑓 + 𝛽𝑔)(𝑥) = 𝛼𝑃𝑎(𝑓) + 𝛽𝑃𝑎(𝑔).   
2. For each aєZ, Pa is idempotent. 
3. For a, a’ єZ with a ≤ a′ and for g(x) є Va where 𝑉𝑎 = 𝑠𝑝𝑎𝑛{∅

𝑎, 𝑏𝑀𝑛
},  bєZ we have Pa’g(x) =g(x). 

4. Given aєZ and f(x) єL2( R) ||Paf|| ≤ ||f||2. 
For f(x), C0 in R we have lim

𝑎→∞
||𝑃𝑎𝑓 − 𝑓||2 = 0.  

 
Theorem 2.2 [8] The system {φa,b}a,bϵZ forms an orthonormal basis in L2(R ). 

 
Effect of Jump Discontinuities on the behavior of Coefficients of Haar-Vilenkin System 

 Consider a function f(x) on the interval [ 𝑟

𝑀𝑛
, 𝑟+1
𝑀𝑛
] with jump discontinuity at 𝑥0 ∈  (

𝑟

𝑀𝑛
, 𝑟+1
𝑀𝑛
) and continuous at 

all other points in [ 𝑟

𝑀𝑛
, 𝑟+1
𝑀𝑛
]. We have to find the value of < 𝑓,𝜓𝑎,𝑏 > i.e. Haar-Vilenkin coefficients for  𝑥0 ∈

 𝐼𝑎,𝑏  the coefficients for 𝑥0 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑙𝑖𝑒𝑠 𝑖𝑛 𝐼𝑎,𝑏 .  

Suppose that on the intervals [ 𝑟

𝑀𝑛
,  𝑥0] and [𝑥0, 

𝑟+1

𝑀𝑛
], the function f(x) is C2. Consider xa,b as the mid point of Ia,b 

for the fix integers 𝑎 ≥ 0 and 0 ≤ 𝑏 ≤ 𝑚𝑛
𝑎 − 1.  

Case I: If 𝑥0 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑙𝑖𝑒𝑠 𝑖𝑛 𝐼𝑎,𝑏 , then we have  

|< 𝑓, 𝜓𝑎,𝑏 >| ≈
1

4
𝑚𝑛

−3𝑎/2𝑀𝑛
−3/2|𝑓′(𝑥𝑎,𝑏)|,    for large values of a. 

Case II: If 𝑥0 ∈  𝐼𝑎,𝑏 , then if a is large, we have  

 

|< 𝑓, 𝜓𝑎,𝑏 >| ≈ 𝑚𝑛
𝑎/2𝑀𝑛

1/2 1

2𝑚𝑛
𝑎𝑀𝑛+1

|𝑓(𝑥0
−) − 𝑓(𝑥0

+)| 

                                                       = 
𝑚𝑛

−𝑎/2𝑀𝑛
1/2

2𝑀𝑛+1
|𝑓(𝑥0

−) − 𝑓(𝑥0
+)|. 

From the above two cases, we have the observation that for large values of a decay of |< 𝑓, 𝜓𝑎,𝑏 >| is slower 

if  𝑥0 ∈  𝐼𝑎,𝑏 rather than if 𝑥0 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑙𝑖𝑒𝑠 𝑖𝑛 𝐼𝑎,𝑏. 
 
  3   A special type of Multiresolution Analysis 
The results of this section are introduced in [9, 11]: 
Definition 3.1 For k as in taken in (2.1), a special type of multiresolution analysis(MRA) is generated by a 

sequence  which are closed subspaces ZjjV }{  of square integrable functions over R such that  

1. 1+ jj VV   for all integers j. 

2. jZj V  is dense in L2(R).  

3. jZj V  is a zero subspace. 
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4. jVxf )(  iff 0)( Vxmf j
n −

 for all integers j.  

5. There exists gk(x)  in L2(R) , such that the system of translates of gk i.e. ( ) ZbM
b

k
n

tg − }{  is an 

orthonormal system, here gk(x) is called a scaling function and 

               .)(0








k
nM
b

  

Remark 3.1  In order to define a special type of MRA, first we identify the space V0 and then take Vj as 

})(),()(:)({ 0VxgxgDxfxfV kkmj j
n

==  

so that the Definition 3.1(4) is satisfied and then we prove that the conditions (1), (2),(3) and (5) of 
Definition 3.1 hold. First identify the function gk(x)  and define V0 such  that  the system of translates i.e. 

Zbk xgT
nM
b )}({   over Z is an orthonormal system and take 

                .)(0








= xgTspanV k
nM
b

 

 
Example 3.1 [Haar-Vilenkin MRA] Consider the set V0 of the function f(x) which are the step functions and 
satisfy 

(i) f(x) is square integrable over R. 

(ii) Over the interval 𝐼
0, 𝑏𝑀𝑛

=
[𝑟+𝑏
𝑀𝑛

,   
𝑟+𝑏+1

𝑀𝑛
 [, f is constant ∀𝑏 ∈ 𝑍. 

It can be verified that for 𝑙 ∈ 𝑍,   .)(0 xgTspanV k
nM
l= where    











+
=

nn M

r

M

rnk Mxp
1

,

)(  .  

4   Integral forms of Haar-Vilenkin Wavelets  
In this section we are introducing the results proved in [10]. 
Define the Haar-Vilenkin system (ℎ𝑘 , 𝑘 ∈ 𝑁)  taken as over [A,B] of length 1 as h0=1 and






 +
++

=

otherwise

M

r
At

M

r
A

m

ist
M

th
nnn

n
n

k

0

12
exp

)(



                                                                        (4.1)        for k as defined 

in 2.1. Let  

𝑃𝑣,𝑖(𝑥) =  ∫∫…∫ℎ𝑖

𝑥

𝐴

𝑥

𝐴

𝑥

𝐴

(𝑡)𝑑𝑡𝑣 

                                                                                 =
1

(𝑣−1)!
∫ (𝑥 − 𝑡)𝑣−1 ℎ𝑖(𝑡)𝑑𝑡.
𝑥

𝐴
 

For 𝑖 ≠ 1 and for 
𝑟

𝑀𝑛
≤ 𝑥 <  

𝑟

𝑀𝑛
+ 

1

𝑀𝑛−1
, we have  

𝑃𝛼,𝑖(𝑥) =
1

(𝛼 − 1)!
∫𝑥(𝑥 − 𝑡)α−1 √𝑀𝑛𝑑𝑡 

                                                                      =
√𝑀𝑛

(𝛼−1)!
∫ 𝑥(𝑥 − 𝑡)α−1 𝑑𝑡 

                                                                       =
√𝑀𝑛

(𝛼−1)!

1

𝛼
(𝑥 −

𝑟

𝑀𝑛
)
𝛼

 

                                                                        = 
√𝑀𝑛

𝛼!
(𝑥 −

𝑟

𝑀𝑛
)
𝛼

  

If  
𝑟

𝑀𝑛
+

1

𝑀𝑛−1
≤ 𝑥 <  

𝑟

𝑀𝑛
+ 

2

𝑀𝑛−1
, then on solving as above, we have  

𝑃𝛼,𝑖(𝑥) =  
√𝑀𝑛

𝛼!
[𝑥 − (

𝑟

𝑀𝑛

+
1

𝑀𝑛−1

)]
𝛼

𝑒
2𝜋𝑖𝑠

𝑚𝑛
⁄   

… 
… 

V = span T g x
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If  
𝑟

𝑀𝑛
+

𝑚𝑛−1

𝑀𝑛−1
≤ 𝑥 <  

𝑟+1

𝑀𝑛
,  we have  

𝑃𝛼,𝑖(𝑥) =  
√𝑀𝑛

𝛼!
[𝑥 − (

𝑟

𝑀𝑛

+
𝑚𝑛 − 1

𝑀𝑛−1

)]
𝛼

𝑒
2𝜋𝑖𝑠(𝑚𝑛−1)

𝑚𝑛
⁄

. 

Thus  

𝑃𝛼,𝑖(𝑥) =  

{
  
 

  
 

0 𝑥 <
𝑟

𝑀𝑛

√𝑀𝑛

𝛼!
(𝑥 −

𝑟

𝑀𝑛
)
𝛼 𝑟

𝑀𝑛
≤ 𝑥 <  

𝑟

𝑀𝑛
+ 

1

𝑀𝑛−1

√𝑀𝑛

𝛼!
[𝑥 − (

𝑟

𝑀𝑛
+

1

𝑀𝑛−1
)]
𝛼

𝑒
2𝜋𝑖𝑠

𝑚𝑛
⁄

….

√𝑀𝑛
𝛼!

[𝑥−(
𝑟

𝑀𝑛
+
𝑚𝑛−1

𝑀𝑛−1
)]
𝛼
𝑒
2𝜋𝑖𝑠(𝑚𝑛−1)

𝑚𝑛
⁄

𝑟

𝑀𝑛
+

1

𝑀𝑛−1
≤ 𝑥 <  

𝑟

𝑀𝑛
+ 

2

𝑀𝑛−1
…

𝑟

𝑀𝑛
+
𝑚𝑛−1

𝑀𝑛−1
≤𝑥< 

𝑟+1

𝑀𝑛

                                  (4.2) 

 
We have hi(t) = 0 for i=0 and  

𝑃𝛼,1(𝑥) =
1

(𝛼−1)!
∫ (𝑥 − 𝑡)𝛼−1 𝑑𝑡.
𝑥

𝐴
= 

1

(𝛼−1)!

1

𝛼
(𝑥 − 𝐴)𝛼   = 

(𝑥−𝐴)𝛼

(𝛼)!
                                            (4.3) 

Thus we have equation (4.2) for  𝑖 > 1 and (4.3)  for i=1. 
 
4.1  Haar-Vilenkin Wavelets in Matrix Form                         
          We have constructed the wavelets in discrete form for the case where A=0 and B=1. The grid points are 
denoted as  
                                                          𝑥𝑙̃ = 𝐴 + 𝑙 𝛿𝑥, 𝑙 = 0,1,2, … ,𝑚0.                                      (4.4) 
We have considered  

                                                           𝑥𝑙 = 
1

2
(𝑥𝑙−1̃ + 𝑥𝑙̃  ), 𝑙 = 1,2, … ,𝑚0                                (4.5) 

We get the Haar-Vilenkin wavelets on replacing x by xl in equations (4.1), (4.2) and (4.3). The elements of 
square matrices H, P1, P2, …, Pv, that we have introduced are 

𝐻(𝑖, 𝑙) =  ℎ𝑖 (𝑥𝑙), 𝑆𝑣(𝑖, 𝑙) =  𝑃𝑣𝑖(𝑥𝑙), 𝑣 = 1,2,3…  

A=0, B=1 and  

𝛿𝑥 =  
𝐵 − 𝐴

𝑚0

=  
1

𝑚0

. 

 
Example 4.2 Take a sequence (𝑚𝑘 , 𝑘 ∈ 𝑁) = (2,2,2, … ). 
Then x1=1/4 and x3=3/4. Then  

ℎ1(𝑡) = {

1 0 ≤ 𝑡 < 1/2

−1
1

2
≤ 𝑡 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

ℎ1(𝑡) = {

√2 0 ≤ 𝑡 < 1/4

−√2
1

4
≤ 𝑡 < 1/2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Haar-Vilenkin matrix is formulated as  

𝐻 =  [
ℎ1(𝑥1) ℎ1(𝑥2)
ℎ2(𝑥1) ℎ2(𝑥2)

] =  [
1 −1
√2 0

].  

The other matrices are  

𝑆1 = [
𝑃11(𝑥1) 𝑃11(𝑥2)
𝑃12(𝑥1) 𝑃12(𝑥2)

] , 𝑆2 = [
𝑃21(𝑥1) 𝑃21(𝑥2)
𝑃22(𝑥1) 𝑃22(𝑥2)

] … 

Using the equations (4.4) and (4.5), we have 

𝑃1 = [

1

4

3

4

1

32

9

32

]. 

 
4.2 Exanpsion of Function in Haar-Vilenkin Wavelet Series 
Let f є L2[A,B]. It can be expanded in Haar-Vilenkin wavelet series as 

 f(x)  =  ∑ aihi(x)
m0
i=1 ,                                          (4.6) 
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where ai denotes the Haar-Vilenkin wavelet coefficients. The discrete form of this expansion 𝑓(𝑥𝑙)  =
∑ aihi(xl)
m0
i=1                                          (4.7) 

The matrix form of (4.7) is  f= a H, where H is Haar-Vilenkin matrix.  
Both a = (ai) and f = (fl) are m0 dimensional row vectors. We obtain a = fH−1 .  
On replacing the value of a in (4.6), we obtain wavelet approximation of f. 

 
Conclusion 
In this paper we have reviewed the basic properties of Haar wavelets.  Haar-Vilenkin wavelets which 
are also termed as generalized Haar wavelets and its various properties are studied. A  s p e c i a l  
t y p e  o f  m u l t i r e s o l u t i o n  a n a l y s i s  i s  s t u d i e d .  The Haar-Vilenkin wavelets have also 
been studied in integral and matrix form. These methods will be useful in solution of ordinary and 
partial differential equations. 
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