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ABSTRACT The concept of fixed point opens a door of vast applications of Mathematics in many

fields like Economics, Game Theory etc. Existence of fixed point becomes a centre of attraction for many
researchers in applied Mathematics. Stefan Banach proved a first fixed point theorem in the settings of
Metric Spaces. But the result requires the continuity of the self map. In this research paper we generalize
the Banach Contraction Mapping Principle. This theorem uses a function from the set of all positive real
numbers to itself to define a contractive condition. We have also presented an example to prove that the
theorem indeed exists. Further we have established a fixed point theorem in complete metric space by
using altering distances between the points. This result generalizes the fixed point theorems of M. S.

Khan et al.,, Reich and Rakotch.
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1. Introduction

Stefan Banach, a celebrated Mathematician from
Poland proved the first fixed point theorem in
1922, known as the “Banach Contraction
Mapping Principle” [Banach, 1922]. Kannan
invented new type of contractions called Kannan
Mappings. Kannan proved that his contractions
are independent of Banach contractions and also
proved that every Kannan mapping on a
complete metric space has a unique fixed point
[Kannan, 1969]. There are numerous extensions
of Banach Contraction Mapping Principle in the
literature. See [Ciric, 2003, Jachymski, 1997,
Meer and Keeler, 1969]. Some of the important
are Boyd and Wong [Boyd and Wong, 1969]
and Matkowski [Matkowski, 1975]. We have
proved a fixed point theorem on a complete
metric space that shows a close resemblance to
the theorems of Boyd, Wong and Matkowski.
The next generalization of Banach Contraction
Mapping Principle is in terms of altering
distances function. Delbosco [Delbosco, 1976-
77] and Skof [Skof, 1977] established fixed
point theorem for self maps of complete metric

spaces by altering the distances between the
points. Later on F. Skof, M. S. Khan, M. Swaleh
and S. Sessa [F. Skof, M. S. Khan, M. Swaleh
and S. Sessa, 1984] studied the fixed point
theorems regarding the altering the distances
between the points. Sastry K. P. R., Babu G. V.
R. also proved the fixed point theorems about
the altering distances between the points [Babu,
G. V. R, 2001, Sastry, K. P. R., 1999]. Jha K.
and Pant R. P. worked further in this direction
[Jha K. and Pant R. P., 2002-2007]. The purpose
of this paper is to study a fixed point theorem by
altering distances between the points.

2. Preliminaries and Definitions

Definition 2.1 (Metric Space) [Kreyszig,
1989]: A “Metric Space” is a pair (X,d),
where X is a set and d is a metric on X (or
distance function on X ), that is, a function
defined on X x X such that for all x,y,ze X
we have:

(M1) d is real-valued, finite and non-
negative,
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M2) d(x,y)=0ifand onlyifx = y,
M3)d(x,y) =d(y,x) (Symmetry)

(M4)

d(x,y)<d(x,z)+d(z,y)(Triangle Inequality)
Example 2.1 [Kreyszig, 1989]: The set of all
real numbers, taken with the usual metric
defined by d(x,y)= |x - y| is a metric space.
Note 2.1 [Goldberg, 1970]: It is important to
note that if (X,d) is a metric space and

Ac X, then (A,d) is also a metric space.
Definition 2.2: A sequence {x, }~ in a metric
space (X,d)is said to converge or to be

convergent if there is an x€ X such that
limd(x,,x)=0, x 1is called the limit of

{x,}._ and we write limx, = x or x, =X as

n—»0

n— o,

Definition 2.3: A sequence {xn}w in a metric

n=l
space (X,d) is said to be a “Cauchy Sequence”
if for every & > 0 there is an N = N(&) such

that d(x,,x,)<¢ forevery m,n> N

Theorem 2.1: Every convergent sequence in a
metric space is a Cauchy sequence.

Note 2.2: The converse of the above theorem is
not true in general. That is a Cauchy sequence in
a metric space X may or may not converge in
X .

Definition 2.4: A metric space (X,d) is said to
be a “Complete Metric Space” if every Cauchy
Sequence in X converges in X .

Definition 2.5: A “Fixed Point” of a mapping
T:X — X is an x € X which is mapped onto
itself, that is 7x = x.

Definition 2.6: Let (X,d) be a metric space
and let 7 be a mapping on X . Then T is called
a “Contraction” if there exists » €[0,1) such that

d(Tx,Ty)<rd(x,y)forall x,yeX.
Theorem 2.2 [Banach 1922]: Let(X,d)be a

complete metric space and let 7 be a contraction
on X . Then T has a unique fixed point.

E ISSN 2348 -1269, PRINT ISSN 2349-5138
Theorem 2.3 [Boyd—Wong Theorem, 1969]:
Let (X,d) be a complete metric space, and
suppose that
T:X — X satisfiesd(Tx,Ty) <w(d(x,y)),
for all x,y € X, where i :[J —[0,0) is

upper semi-continuous from the right (that is,
for any sequence

¢ J1>0= limsupy (¢,) <w(¢)) and

satisfies O <y (¢) <t for t >0. Then, T has a

unique fixed point.

Theorem 2.4 [Matkowski. 1975]: Let
(X,d) be a complete metric space and

suppose  that T X—->X
d(Tx,Ty) <y(d(x,y)) for all

where, v :(0,00) — (0,00) is monotone non-

satisfies
x,yelX,

decreasing and satisfies limy "(¢) =0 for all

+>0. Then T has a unique fixed point in
X .

Definition 2.8 [Gupta, 2016]: Let ¥ be the set
of all functions ¢ :[0,00) — [0, 00) satisfying the
following conditions:

(1) @(¢) is strictly increasing and continuous.
(2) ¢(¢) =0 ifand only if #=0.

Such functions are called “Altering Distance
Functions”

Definition 2.9 [Khan, Swaleh, Sessa, 1984]: Let
® be the set of all functions
¢ :[0,00) —[0,00) satisfying the conditions (1)
and (2) and the following condition: (3)
o(t)y=M.t" for every (>0,
M >0, >0 are constants.
Definition 2.10: Let Q be the se of all functions
¢:[0,00) —[0,00) satisfying the conditions (1)
and (2) and the following condition: (4)
P(a+b)<p(a)+¢(b).

Example 2.2: The following are examples of
the functions in the set Q defined in the
definition 2.10.

Do) =t

where

Vt €[0,0)
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2)$(0) = tanh, Vi e[0,00)
3)¢(t) =tan'¢t, Vt €[0,0)
4)(t) =sec't, Vt €[0,0)

Theorem 2.5 [Khan, Swaleh, Sessa, 1984]: Let
(X,d) be a complete metric space, let ¢ € ¥

and let 7:X — X be a self mapping which
satisfies the inequality

¢(d(Ix,Ty))<c¢(d(x,y))for all x,yeX

and for some 0<c<1. Then T has a unique
fixed point.

Theorem 2.6 [Skof, 1977]: Let T be a self map
of a complete metric space (X,d) and let ¢ €

W satisfying for every x,y € X,

$(d(Tx, T9)) < ag(d (x, 7)) + b (d (x,Tx)) +
cpd ((»,1v))

for all x,ye X, where 0<a+b+c<1Then

T has a unique fixed point.

Theorem 2.7 [Khan, Swaleh, Sessa, 1984]:
Let (X,d) be a complete metric space, T a

self map of X and ¢ €Y. Furthermore, let
a,b,c be three decreasing functions from
[17\{0} into [0,1) such thata+2b+c<1.

Suppose that T
condition:

d(Tx,Ty)) < ad(d(x,)) +b
¢( (Tx y))<a¢( (x y))+ [(b(d(y,Ty))

cmin{(d(x,7y)),p(d(y,Tx))}
x,yeX and x#y. Then T has a

satisfies the following

where,

unique fixed point.

3. Main Results

Theorem 3.1: Let (X,d) be a complete
metric space and suppose that 7: X - X
satisfies

¢(d (x,Tx)) +j N

e ISSN 2348 -1269, Print ISSN 2349-5138
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d(Tx,Ty) < ay (d(x,Tx))+ By (d(y,Ty)) +
7 (d(x.y))+ 6y (d(x.Ty)+ 1O
Oy (d(y.Tx))
all x,ye X , where v :[J —[0,00)satisfies
0<y(t)<t forall >0,y (0)=0

(A)

Also

O<a+pB+y+26+0<1,
a>0,>0,y>0,6>0,0>0.

Then 7 has a unique fixed point in X .

Proof: Let X, € X be an arbitrary but a fixed

element in X . Define a sequence of iterates
{xn };1‘021 in be

— — Ty — T2 — Ty —
x, =Txy,x, =Tx, =T x,,x;, =Tx, =

By the condition (A) on 7 we get,
d(x,,%,,)=d(Ix,,Tx,)
<ay (d(x,,,Tx, )+ Py (d(x,,Tx,))+

yw (d(x,,,x,))+ 0y (d(x, . Tx,))+ 0 (d(x,,Tx,.,))
=ay (d(x, ,x,))+ By (d(x,,x,.,))+

n (d(x,,,x,))+ 0y (d(x,,x,,))+0y (d(x,,x,))
<ad(x, ,x,)+pd(x,,x,.)+

7/d(xn-1axn)+5(d(xn-1axn+1))+0 Cry@) <o)

Thus,

d(x,,x,)<od(x, ,x)+pd(x,,x, )+
j/d(xnfl’xn) + 6 (d(xnfl ’xn )) +
6(d(xn’xn+l))

where, & ZM. Here 0<h<1.
1-B-o

R (1 - ﬁ - a)d(xn+l’xn) < (a + }/ + 5)d(‘xn—1’ xn)

R d(‘er—l ’xn) < L}/—i_ga’(xn—l’xn)

-5

sd(x,,,x)<hd(x, ,x,)
Continuing in  this way, we  get
d(x,,x )<h"d(x,x).

R Taking limit as
n — o we get,

Research Paper

[JRAR- International Journal of Research and Analytical Reviews | 21




[ VOLUME 4 1 ISSUE 3 I JULY - SEPT. 2017]

E ISSN 2348 -1269, PRINT ISSN 2349-5138

d(x,,,x)—>0 (-0<h<])

+19
Therefore {x,} ., is a Cauchy sequence in X.

As X is a complete metric space, there exists
x € X such that lim x, =x. We shall show

n—»0

that x is a fixed point of 7.

As T ais continuous function we have,

x=limx, =limTx _ =T (lim X ) = Tx.

Therefore Tx=xand xis a fixed point of 7.
Next we shall show that x is unique fixed point
of T.
Let y € X be another fixed point of 7.
Again by the condition (A) we get,
d(x,y)=d(Tx,Ty) < ay (d(x,Tx)) +
By (d(v,1y))+ry (d(x,))+
5y1(d(x,Ty))+9t// (d(y,Tx))
=ay (d(x,x))+ Py (d(y,»))+yv (d(x,y))+
Sy (d(x,))+0y (d(y,x))
=y (d(x,y))+Sy (d(x,y))+
Oy (d(x.))
=(y+0+0)d(x,y)
<d(x,y) C-y+0+60<1)
Thus,d(x,y) <d(x,y)
=ay (0)+ By (0)+yw (d(x,y))+
Sy (d(x,))+0y (d(y,x))
This is possible if and only if d(x,y)=0. Thus
xX=y.

Example 3.1: Consider the complete metric
space of all non-negative real numbers with
absolute value metric. Suppose

that 7 : X — X defined by Tx=%. Let

w :0 —[0,) be defined by y (¢) =%. The

function y(¢) is continuous, also0 <y (¢) <?

forall £>0, w(0)=0. Let

1
a: = :6:0:—.
B=v 2

Then clearly
O<a+ﬁ+y+26+0=%<1,

a>0,>0,y>0,6>0,0>0.

We verify that the condition (A) of the theorem
3.1 is satisfied.
We observe that

x y\_P-y]
AT, 1) =d| 22| A
(1) (16 16j 16

Also

ay (d (x,Tx)) + By (d(y.Ty))+
ny (d(x,))+6y (d(x,Ty))+
Oy (d(y,Tx))

1 X 1 y
“wldl e X s tulal v 2
8"'[ [x’16D+8"”( (y’16D+
Ly (d(x, )+~ d[x,lj ity d(y,ij
3 6))"3 16
15x) 1 (15p).1 .
W(16J+SW(I6J+8W(|X W)+
|l6x—y| 1 |l6y—x|
SW[ 6 ) 8" 16
(%) 1 5) &)
16 ) 1\16) 1]x—y 10 16
+ +— +— +

3
1
8
1

1
8 2 8 2 8 2 8 2
|16y—x|
l[ 16 j
8 2
=15x+15y+|x—y|+|l6x—y|+|16y—x|
256 256 16 256 256

_ 15(x+y) N |x—y| N |16x—y| N |l6y—x|
256 16 256 256
Thus clearly
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Xy
AT, Ty =d| =2 |-
(Tx1) [1616)

|x—y| < 15(x+y) N
16 256
|x—y| N |16x—y| N |16y—x|
16 256 256
=ay (d(xTx))+ By (d(y,T)) +
yw (d(x,))+0y (d(x,Ty)) +
By (d(y.Tx))
for all x €[] *. The condition (A) of the theorem
3.1 is satisfied. We see that x =0 is the unique

fixed point of the function 7.
Theorem 3.2: Let (X,d)be a complete metric

space and T be a self map of X . Let ¢ €Q.

Furthermore let 7 satisfy the condition:

q)(d(Tx, Ty)) {a (d(x,y))¢(d(x,Tx))+

B(d(x,y))p(d(y,Ty))+
(B) y(d(x, )¢ (d(x,»))+
5(d(x,y))¢(d(x,Ty))+
0(d(x,»))$(d(y.Tx))
for all x,yeX,x#y, where

a,f,y,0,0 >0are decreasing functions from
0~ \{O} into [0,1), such that
a+pP+y+26+60<1. Then T has a unique

fixed point in X .
Proof: For the sake of simplicity we denote

a(d(x,y)) by a, p(d(x.y)) by B,
y(d(x,y))by v, &(d(x,y))by & and
0(d(x,y))by 6.

Let x, be a point in X . We define x ,, =Tx,
for n=0,1,2,3..... .

We shall show that 7 has fixed point.
From the condition (B) on T' we have,

$(d(x,.x,.))=¢(d(Tx,,,Tx,))

< a¢(d(xn71,Txn71)) + ,B¢(d(xn,Txn)) +
yp(d(x,,x,))+ 6 (d(x,,.Tx,))+
¢ (d(xn ,TxH))

=ad(d(x,,.x,))+ Bp(d(x,.x,.))+
y(d(x, . x,))+0p(d(x,.,.x,.,))+
06(d(x,.x,))

<ag(d(x,,.x,))+Bd(d(x,.x,.,))+
y(d(x,,.x,))+0¢(d(x, .x,)+d(x,.%,,,))

<ag(d(x,,.x,))+Bo(d(x,.x,.,))+
y(d(x,.x,))+86(d(x,,x,))+
5p(d(x,.x,,,))

Hence we obtain
a+y+0o

¢(d(xnaxn+l))Sl_ﬁ—_(sfl)(d(xnfvxn))

<¢(d(x,,.x,)) @
Thus ¢(d(x,,x,,))<¢(d(x,,x,)). Now ¢
is an increasing function. Therefore we have
d(x,x,,)<d(x, ,,x) for all n=1,273,...
.Therefore {d (xn,xn+1)}::0 is a decreasing
sequence which is also bounded below (by 0).

Let limd(x,,x,,,)=L. In equation (1) taking

limit as n—> oo we get

limg (d(x,,x,.,) <limg(d(x,,x,))

o (limd @, x,.)) <4 (limd(r, .3,

S p(L)<g(L)
LL<L
S L=0.

Now we shall prove that {xn}:zl is a Cauchy

sequence. Suppose {xn}::1 is not a Cauchy
sequence. Thus there exists £€>0 and two
sequences {rn}::1 and {tn}:zl such that for

every nelluU{0} , we find that
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r,>t,20,d(x, ,x, )2¢candd(x, ,x, )<e&.

For each n>0 we put S, =d(x, ,x, ). Then

we have

e<S,<d(x, ,x )+d(x ,x )<d(x, ,,x )+¢
Since {d(xn,xn+l)}::

converges to € .

, converges to 0, {Sn }::1

Furthermore triangle inequality implies for each
n=0,
—d(x, ,x, ,)—d(x, ,x, )+d(x,,x,)

<d(x, X, ) Sd(x, ,x, )+d(x, ,x, ,)+S,

L+

o0
n=

This implies {d(xr X +1)} | converges to

€.
From the condition (B) we have,

(d(x, 1.x,.))=¢(d(Tx, . Tx,))

<ag(d(x,.Tx,))+Bé(d(x, . Tx, )+

y$(d(x, %)) +06(d(x, . Tx, )+

0p(d(x, .Tx,))

ap(d(x,.x, )+ Bp(d(x, .x, )+

y$(d(x, .x,))+5¢(d(x, .x, .))+

0p(d(x,.x, )

<ag(d(x,.x, )+ Bo(d(x, .x, )+
y$(d(x,.x,))+0p(d(x, .x,)+d(x,.x, )+
0p(d(x, .x, ) +d(x, ,.x, )

As n— oo we

#(e) < (r +5+0)p(e)<p(e)  which

contradiction. Therefore {xn}::1 is Cauchy

get
is a
sequence. By the completeness of the metric
space X , the sequence {xn}::1 converges to

some point z € X . Now we show that z is a
fixed point of 7. We put p, =d(z,x,).
We have

EISSN 2348 -1269, PRINT ISSN 2349-5138
$(d(x,,,.72)) = ¢(d(Ix,.Tz))
<a(d(x,,Tx,))+ Bp(d(z.T2)) +

yp(d(x,,2))+0¢(d(x,,Tz))+
9¢(d(z,Txn))
=ad(d(x,,x,.,))+Bo(d(z,Tz)) +
yp(d(x,,2))+5¢(d(x,,T2))+
0¢(d(z,x,,,))
<P(d(x,,x,.)) + fp(d(2,T2)) +

¢(d(xn,z))+%¢(d(xn,Tz))+
¢(d(z,x,.,))

Taking limit as 7 — o0 we get,

limsup¢(d(xn+1,Tz)) < [ﬁ +%j¢(d(Z,TZ)) 2)

On the other hand we also have by triangle
inequality,
d(z,Tz)<d(z,x,))+d(x,,x, ., )+d(x
d(z,x,)+d(x,
d(x, ,1z)

n+l’TZ)

.'.q)(d(z,Tz))Sq{ axn+1)+j T

n+l2

his implies that
¢(d(z,Tz)) <limsup@(d(x,,,,Tz))
Thus (2) and (3) imply

limsup¢(d(x,,,,Tz)) < (,3 +%j¢(d(Z=TZ)) <

¢(d(z, Tz)) <
limsup¢(d(x,

—

Tz))

+1°

Thus we must have ¢(d(Z,TZ))=0. So

Tz = z . Thatis, z is a fixed point of T .
Suppose T has another fixed point as y € X .
Then
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¢(d(x,y)) = ¢(d(Tx,Ty)) < a¢(d(x,Tx))+
Bo(d(y,Ty)) +rp(d(x,y))+
8¢ (d(x,Ty))+0¢(d(y,Tx))
=ad(d(x,x))+Bp(d(y, )+
yp(d(x,))+ ¢ (d(x,y))+
0¢(d(y,x))
=79 (d(x,))+ ¢ (d(x,y))+604(d(x,»)) =
(y +8+0)p(d(x,»))<d(d(x,y))
Cry+0+0<1])
Thus ¢(d(x,y))<¢$(d(x,y)). This is possible
if ¢(d(y,x)) =0. Thus x = y . Thus the fixed

point of T is unique. This completes the proof.
Note 3.1: We make a note of it that the
continuity of 7 is not needed in the theorem 3.2.
If we take o =f =y =constantand
6=60=0 in the theorem 3.2, we get the
following result due to F. Skof [Skof, 1977].
Corollary 3.1: Let 7" be a self map of a
complete metric space (X,d) and ¢ € @ such

that for every x,yelX,
¢(d(Tx, Ty)) < a¢(d(x,Tx))+

B(d(y, 1))+,

r$(d(x,))

where 0 <a+ f+y <1. Then T has a unique
fixed point.

If we take o = 3,0 =0 =0,¢(¢) =t for every
t>0 in the theorem 3.2, we obtain the
following result due to S. Reich [Reich, 1971].
Corollary 3.2: Let T be a self map of a
complete metric space (X,d) and ¢ € @ such

that for every x,yelX,
¢(d(x,Tx))+J
d(Tx,Ty)) <
et “[¢(d(y,Ty>) "
rp(d(x,))

where 0<a+ [ +y <1. Then T has a unique
fixed point.

If we take @ = =0=60=0 in the theorem
3.2, we obtain the following result.

Corollary 3.3: Let 7 be a self map of a
complete metric space (X,d) and ¢ € ¥ such

that for every x,yeX,x#y,

¢(d(Ix,Ty)) < yp(d(x,y)), where 0<y <1.
Then T has a unique fixed point.

If ¢(t)=t in the corollary 3.3, we obtain the
following fixed point theorem of Rakotch
[Rakotch, 1962].

Corollary 3.4: Let T be a self map of a
complete metric space (X,d) and ¢ € ¥ such
that for every
d(Tx,Ty)<yd(x,y), where 0<y <1. Then

T has a unique fixed point.

Conclusion: We have extended the theorems of
Boyd, Wong [Boyd and Wong, 1969] and
Matkowski [Matkowski, 1975] relaxing the
upper semi-continuity of the functiony in

theorem 3.1. Further if we take «,f,0and@

x,yeX,x#y,

equal to 0 and y as identity function, we get the

Banach Contraction mapping principle. Further
we extended theorems of F. Skof [Skof, 1977],
M. S. Khan et al. [Khan et. al., 1984], Rakotch
[Rakotch, 1962] and Reich [Reich, 1971].
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fisso per

All men of action are dreamers.
~ James Huneker
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