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ABSTRACT In recent years many authors investigated q-integral inequalities. Therefore q-integral

inequalities have become far reaching tools for the development of many branches of pure and applied
mathematics. Here we obtain some new fractiona q-integral inequalities associated with q-integral operator.
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1. Introduction

In recent years the study of fractional g-integral inequalities involving functions of independent
variables has been an important research subject in mathematical analysis because the inequality
technique is also one of the very useful tools in the study of special functions and theory of
approximations.

For our purpose, we begin by recalling the well-known celebrated functional considered by Chebyshev
[1] and defined by

T(f,9) == [, fFDg@dx — (= [} f)dx) (= [ 9(x)dx), (1)
Where g(x) and f(x) ate two integrable functions on [a, b]. If f{(x) and g(x) are synchronous on [a, b}, i.e.,
F)—fONGE) —gly) = 0 (2)

Forany x,y € [a,b], then T(f, g) = 0. The functional (1) has attracted many researchers attention due
to diverse applications in numerical quadrature, transform theory. The function (1) has also been used
to yield a number of integral inequalities ( see [2], [3], [4], [5].[6], [7], [8] )- In 1935, Grss [9] proved the
inequalities
K—l)(L—1
IT(F, 90l <52 3)

Where f(x) and g(x) are two bounded functions i.e.,

k <f(x) <K, I <glx)<L (4)

Forany k,K,l,L € Randx,y € [a, b]. Plya and Szeg [10] obtained the following inequalities defined as
[y r2wdx [} g ROLIS| ( \F \/7 ) 5)
(1 rear 2 g0oax) 4

Provided f, g satisfy (4) and k,1 > 0. Similarly, Dragomir and Diamond proved that [11]

(K-K)(L-1) b b
IT(f. DI < s —orvang o F@)dx [ 9()dx, (6)
Where f(x) and g(x) are two positive integrable functions so that
0<k <f(x) <K<, 0<l<gx)SL<w (7

Recently, Anber and Dahmani [12], by using the Riemann-Liouville fractional integral, presented some
interesting integral inequalities of Plya and Szeg type.

For our purpose, we need the following definitions and some properties.
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Definition 1: A real valued function f(t) (t > 0) is said to be in the space C;(n,u € R) if there exists a
real number  p > psuch that f*(t) = t? ¢(t), where ¢(t) € C(0, ).

Here, for the case n=1, we use a simpler notation C/} = Cu-

Definition 2: Let R(«@) > 0, and be real or complex numbers. Then a g-analogue of Saigo fractional
integral I;’B'n is given by |£| < 1by[13]

t=F-1
Iq (a)

atf. -n. m
P = 1/t @) S e O - 1y gD o/t = 1 f(2) dyt
®)

The integral operator Ig’ﬁ'" includes both the g-analogue of the Riemann-Liouville and Erdlyl-Kober
fractional integral operators given by the following relationships:

PO} = IO} = £ [ @0/t et f@dyr (@>0,0<q<D) 9
And
RUPOY = PO} = T @/ Qe f@Odr (@>00<q<1) (10)

Where (a; q), is the g-shifted factorial defined by

(n=0)

P23 - agh) (neN) (11)

@ = {;

Where a,q € Canditisassumedthata # q7™ (m € Nj). The g-shifted factorial for negative
subscript is defined by

1

(a; q)n = (1—aq71)(l—aq*2) ....... (1—aq™™) (n € NO) (12)
We also write
(@ Qo ;= [licog(l —aq") (aq € C,lgl<1) (13)
It follows from (11), (12) and (13) that
. (@9
@@ = o (n €D) (14)
Which can be extened ton = a € C as follows
(a;9) w0
(@;Q)e = ——— (a € C; |qI < 1) (15)

(a9%q)w

Where the principal value of q<is taken, for f(t) = t* in (8), we get the known formula

aBn _ Tqu+DIu—p+n+1)  , p
I )= Ty (i—B+ Dl Gratn 1) (16)

Lemma 1: (Choi and Agarwal [14]) Let0<q<1land f : [0,%) —» Rbe a function with f(¢t) = 0 for
allt € [0, ). Then we have the following inequalities:

(i)  Siago fractional g-integral operator of teh function f(t) in (8)
EPF@©) 20 (17)
Foralla>0and 8,7 € Rwitha+ 8 > 0andn < 0.

(ii)  The g-analogue of Riemann-Liouville fractional integral operator of the function f(t) of order in

%) Ig{f®} =0 (18)
Foralla>0and 5,7 € Rwitha+f > 0andn <0.
(iii) The g-analogue of Erdlyl-Kober fractional integral operator of the function f(t) of order in (10)
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1" {f(®)} 20 (19)

Foralla>0and 3,7 € R
2. CERTAIN FRACTIONAL Q-INTEGRAL INEQUALITIES

Here, we establish Plya-Szag type integral inequalities for functions involving fractional integral operator
(8). We begin with lemma involving a g-analogue of Siago fractional integral operator.

LemmaZ2. Let 0 < q < 1, uand v be two continuous and positive integral functions on [0, ) with
0<k; Su(t) <K< o, 0<l <v(r)<L;< o (7t €[0t],et>0). (20)

Then the following inequality holds true:
2

(g @) (1" {"2@}) <1 ( [k /M) (21)
(1487 () e)) S Wil N Kk

Foralla>0and 5,7 € Rwitha+f > 0andn <0.

Theorem 1: Let 0 < q< 1, fand g be two positive function on [0, ) and K, k, L and | be positive real
number with inequality (20) holds. Then the following holds true

F(A-B+n) —B yaBm K—K)L=D) raBn aBn
e PP (F Y0} | < R 1P @M (g0 (22)

Foralla>0and 5,7 € Rwitha+f > 0andn <0.

Proof: Let f and g be two positive function on [0,). Then forall z,p € (0,t) with t> 0, we have

A, p) = (f(@ = f(p)g@) — g(p)) (23)

Or, equivalently

A(,p) = f@g@ + f(p)glp) — fp)g(@) — f(T)g(p) (24)
Now, multiplying both side of (24) by

th-1 — (@**5q9) @ Om : -
. m —pym_1ym ,—(%) _1\ym
ry(@ 7/t D ,;) @@, 1 e

And taking g-integration of the resulting inequality with respect to from 0 to t by using Definition 2, we
get

t=B-1 rt o (@“**;q) (@ Om ( i
. m —B)m_1\ym —(2) _ m
Fq(a) J;] (CI‘L’/t. q)a—lmzzo (qaiCI)m(CI;q)m -q n ( 1) q (T/t 1)61 A(T,p) dq‘[

= 17" (FOHg O + =B £ (p)g(p) — g(IF (F(©)} = FOIEP" {g(®)}  (25)

r(1-p)yr(1+a+n)

Again multiplying both side of above equation by

t=h-1 = (@**59) (@ Dm : .
. m -B)m(_1\ym —(2) _ m
Fq(a)(qp/t,q)a_lmZ=0 e AR GO RO O

And taking g-integration of the resulting inequality with respect to from 0 to t and using (8), we get

¢-2(8+1)

¢t . . w  (@50), GOm0 _pym ) m m
Wfo bt/ t; @a-1@ap/t; Do {Zm=omqn Bm(—1)m q (2)} (@/t=DP (p/t— DI AT, p) dyTdyp

= 2O BB (D)} g (0)} — 21877 {F (DHg ()}

r(-p)yr(1+a+n)
(26)
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By using Cauchy-Schwaz inequality for double integrals, we have

2

t*Z([i’Jrl) t ot qr qp (qa+B q) (q 7. q)m . o m P
Wfo -L (T;q)m a- 1§Z @ oo, e ()] (m) (m) Alw.p) dgTdqp

2 (T qp @a), @D Y rm )
[r @ ff L) [Z e, e (2)} (=9, (t_l) £ dyrdgp

2

tfz(ﬁﬂ)-’-r-’-r(?;q)m1 qp ) 1*2 (q°*; q) @ Dm OPm (—1ym q_(r;)] (t%)m (L) £ drdyp

@ b by @ D@ D D, T

B z(ﬁ+1)f f (q‘r ) (qp:q)a {Zm 0(qu+ﬁ 10),, @O, qm(—1ym g - )} (t 1)’" (tp_l) (_[)d d,p

Fz(a) ¢ @%@Dm (@GDm

2

t~2(B+1) q‘r qp (an? q) (q m y i Lo )
r (@) ff _ . 1{2 @ D (@ q)m ——— g m(-1) )} (t—l)q (t—l) g* (D d,td,p

2
atp.

t*Z(ﬁJrl) t rt qt qp (q q) (q q)m m m = " p "
W J, fo (T;q),,,l a- 1{2 @ D@, D * )} (m) (E)" 90 g(p)dqrdqp]

Applying Definition 2, we get

1
2

t—26B+1D) q qp (qa+ﬁ q) (q ; N 2 . )
I a) f f % a 1 4, 1{2 CEONC: q)m A . TR pa=pm(—qym g (2 )] (tzl)q (t—1) A(t,p) dytdyp

1
r-g+n) —B @B (2 _ (B 2 ra—g+n) BB g 2 _ (B Z]Z
<2 [F(l—l?)F(1+a+n) t Iq (RO} (1‘? {f(t)}) ] '[r(1—ﬁ)r(1+a+n) t Iq {g° ()} (Iq {9(t)})

(27)
Applying Lemma 2, we get

ra-g+mn ,, 1 K+K? \(ap 2
ra—praterm ! ”"{fz(t)}<—<j:+f> w0 (1)) = ( e >(1q’“’{f(t)})

__ra—p+m)  —paBan g2 (K+K)* (@ fn 2

r(1-p)r(1+a+n) I {f (t)} S e 4Kk ( q {f(t)}) (28)
Similarly we get

__rA—p+n)  —paBn (L+l) B

e L P LR OV e (7 {g(t)}) (29)

Finally, by adding (26), (27), (28) and (29), side by side, we arrive at the desired result (22).

In the sequel, we can present another inequality involving the g-fractional integral operator given by (8),
asserted by the following lemma.

Lemma 3: Let 0 < q < 1, u and v be two continuous and positive integral functions on [0, ) with (20)
holds. Then the following inequality holds true:

( B {uz(t)})(ly'a'( {vz(t)} K1L1 k 11 (30)
(1P @) @) (1 o)) = i KlLl

Foralla,y>0and 3,17,6,{ € Rwitha+ >0,y +6 >0andn,{ <O0.

Theorem 2: Let 0 < q < 1, fand g be two positive function on [0, ) and K, k, L and | be positive real
number with inequality (20) holds. Then the following holds true
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__FA=p+m) —p b raA=6+0)  .—prés _
|F(1_ﬁ)r(1+a+n)t P FOHIO + s I (O g ()

lgapy ftlgy, 6, gt

B, 8, (K—k)(L-1 B, .6,
—1P (g (F )Y < e 1T oM (g0} (31)
Foralla,y>0and $,7,58,{ € Rwitha+ >0,y +8 >0andn,{ <0.

Proof: Let f and g be two positive function on [0,). Then forall z,p € (0,t) with t> 0, we have

A(t,p) = (f(@) — f(P)(g(®) — g(p)) (32)
Or, equivalently
AT, p) = f(Wg@ + fp)g(p) — flp)g(®) — f(D)g(p) (33)
Now, multiplying both side of (24) by

t=h-1 = (¢°%59) @ Dm ( .
. m —B)m_1\ym —(2) _1\m
e (@r/t; @as mz=0 @ om@ D, L a1

And taking g-integration of the resulting inequality with respect to from 0 to t by using Definition 2,
we get

t=h-1 [t Z‘” (@%4), @ Dm m
. m n—B)m _1\ym —(2) _1\m
a —[0 (qT/t ) Q)a—l L (qa; q)m (q; q)m . q ( 1) q (T/t 1)q A(T, p) qu

= 157 OO + 1 TP @)9(0) — 901y ™ (@)}~
F@IP gy (34

Multiplying both side of above equation by

-5-1
L,

And taking g-integration of the resulting inequality with respect to from 0 to t and using (8), we get

O o (@) @ Dw (@%5q), (675 q)
0 Jo L Ly

— (0"%q) (a%q .
@p/t; @y ZO( (q; qg: Eq; Q)m)m g g /e -1

I,(a) I,y) @S D@ Dn (@O (@ Dn

qC=0m (=) =G (p/t — DRgPm (=)™ ¢ 2/t = DI (p/t — D2 Az, p) dyT dyp
_ Ir(A-f+mn) giap, ra-6+9)
T TrA-Brd+a+n) IO g + ra-0ra+y+49
— IO {g(@©)

t1% (F(OHg (D)}

—I5P {gOM* {F ()}, (32)

By using Cauchy-Schwaz inequality for double integrals, by using (32) and applying Definition 2, we
get desired result.
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