REPRESENTATIONS BY THE FORM $f(x_1, x_2, x_3)$ WITH MUTUALLY SIMPLE ODDINVARIANTS [d, k]

Dr. Chetna.

P.G. Department of Mathematics, M.M. Modi College, Patiala, Punjab.

Received: March 08, 2018 Accepted: April 10, 2018

ABSTRACT This paper deals with the positive form $f(x_1, x_2, x_3)$ over the integers with mutually simple odd invariants [d,k]. In this paper we consider a prime number q which does not divide 2k and a positive number m prime to q such that we have a primitive congruence $f(x_1, x_2, x_3) \equiv m \pmod{2^3 d^2 km}$. Then it is proved that the number of representations by form lies between the number of classes of integral primitive binary quadratic forms.

Keywords: Quadratic Forms, Primitive, Representations, Congruence and Mutually Odd Invariants.

INTRODUCTION

In the paper [4] it is proved that the number of representations given by the form is greater that the number of classes of binary forms. A primitive quadratic form over the field of integers with odd invariants is considered and another form mutually primitive to it. The present paper considers a prime number q which does not divide 2k and a positive number m prime to q such that we have a primitive congruence $f(x_1, x_2, x_3) \equiv m(mod \ 2^3 d^2 km)$.

REPRESENTATION OF INTEGERS BY THEPOSITIVEFORM $f(x_1, x_2, x_3)$ OVER THE INTEGRES WITH MUTUALLY SIMPLE ODDINVARIANTS [d, k]

Now the following theorem gives on the representations by positive quadratic form in three variables with mutually odd simple prime invariants.

Theorem: Let $f = f(x_1, x_2, x_3)$ be a positive integral primitive quadratic form in three variables with odd mutually simple invariant [d, k]. Let q is a prime number which does not divide 2k. Let h is a positive integer relatively prime to 2dk and b_1, b_2, b_3 are the integers satisfying the condition that $\gcd(h, b_1, b_2, b_3) = 1$. Consider a positive number m prime to q such that we have a primitive congruence

$$f(x_1, x_2, x_3) \equiv m \pmod{2^3 d^2 km}$$
 (1)

as well as the conditions

$$f(b_1, b_2, b_3) \equiv m \pmod{h}$$
 (2)

$$\left(\frac{-km}{q}\right) = 1$$
 (3)

Let $\Delta_{f,m}$ is the field for the form $f(x_1,x_2,x_3)=m$ with the condition that $\gamma>0$. We denote $\eta_{h,b_1,b_2,b_3}(\Delta_{f,m})$ as the number of primitive representations of integers (x_1,x_2,x_3) of number m by form f for which the following condition hold

$$(x_1, x_2, x_3) \equiv (b_1, b_2, b_3) \pmod{h}$$
 (4)

Then there exist constants m_0 , x > 0 and x' > 0 depending only on k, d, q, h, γ , u in the field $\Delta_{f,m}$ such that when $m \ge m_0$, we have

$$xg(-km) < \eta_{h,b_1,b_2,b_3}(\Delta_{f,m}) < x'g(-km)$$
 (5)

where g(-km) are the number of classes of primitive integer positive quadratic forms in two variables with determinant km.

Proof: The upper bound of the condition (5) is trivial (Chetna and Singh [2]). Therefore, we prove a lower boundby the following three cases:

- 1) q is relatively prime to $d_{\mathbf{F}}$.
- 2) $q \setminus h$ therefore q is prime to 2dk.

3)
$$q \setminus d$$
.

Let q prime to 2dk.By (3) there exist an integer l satisfying congruence

$$l^2 + km \equiv 0 \pmod{q}$$

We choose a primitive form $A_1 \pmod{q}$ with the condition $(A_1) \equiv 0 \pmod{q}$. We also suppose that

$$r_1 = q$$
, $A_2 = 1$, $r_2 = 1$, $r = r_1 r_2 = q$, $L_0 = b_1 i_1 + b_2 i_2 + b_2 i_3$

Each integral primitive form $L = x_1i_1 + x_2i_2 + x_2i_3$ with norms km has one-to-one correspondence primitive form (x_1, x_2, x_3) of number m of form $f(x_1, x_2, x_3) = m$. Therefore, by (Chetna [4]), we have

$$r_{h,b_1,b_2,b_3}(\Delta_{f,m}) > r_{h,L_0}(\Delta_{f,m}, r_1, A_1, r_2, A_2, l) > xg(-km)$$

So in this case we obtain the required estimate (5).

Now we prove the second case. Let q divides h thus we have $h = q^{z'}h_1$, where $z' \ge 1$ and the numbers q, h_1 and 2dk are relatively prime pair-wise. By (0h [6]) there exists an integer l, satisfying the congruence

$$l^2 + km \equiv 0 \pmod{q^{2z'}}$$
(6)

Let $L_0 = b_1i_1 + b_2i_2 + b_2i_3$ and suppose that

$$r_1 = r_2 = q^{z'}$$
, $A_1 = A_2 = l - L_0$, $r = r_1 r_2 = q^{2z'}$

Then condition (2) gives us

$$N(A_1) = N(A_2) = N(l - L_0) = N(l + L_0) =$$

$$= l^2 + kf(b_1, b_2, b_3) \equiv l^2 + km \equiv 0 \pmod{q^{z'}}$$
 (7)

where form A_2A_1 is primitive \pmod{q} , thus by (7) and (6), we have

$$A_2A_1 \equiv 2l(l+L_0) (mod \ q)$$

where l is an integer prime to q and we assume that gcd(q, km) = 1.

By (Chetna and Singh [3]),there > xg(-km) primitive integer form Lwith norms km with conditions

$$L \equiv L_0 \pmod{h_1}, (l+L)A_1 \equiv A_2(l+L) \equiv 0 \pmod{q^{z'}}$$
 (8)

Using the congruence (8) and (7), we obtain

$$(L - L_0)A_1 = (l + L)A_1 - (l + L_0)A_1 =$$

$$= (l + L)A_1 - N(l + L_0) \equiv 0 \pmod{q^{z'}}$$

$$A_2((L-L_0) = A_2(l+L) - N(l+L_0) \equiv 0 \pmod{q^{z'}}$$

Therefore by (Burton [1]) we have

$$L - L_0 \equiv 0, L \equiv L_0 \pmod{q^{z'}}$$
 (9)

Congruence (8) and (9) with the co-primes $q^{z'}$ and h_1 leads us to congruence $L \equiv L_0 \pmod{h}$

Hence, we get the number of representations m > xg(-km) by the form f where the congruence (4) and the inequalities (5) are valid.

Finally, we consider the third case. Let us suppose that q divides d, then we consider $d = q^z d_1$, where q, d_1 and d are pair-wise co-prime. Since there exists a positive integral primitive quadratic form in three variables with invariant $[d_1, k]$, then by (Shimura [7])

$$f(x_1, x_2, x_3) = \theta\left(\sum_{i=1}^3 c_{1i} x_i, \sum_{i=1}^3 c_{2i} x_i, \sum_{i=1}^3 c_{3i} x_i\right) (10)$$

where (c_{ij}) is a 3 × 3 matrix of integers with determinant q^z is obtained by linear integer substitution

$$\begin{cases}
\frac{\overline{x_1}}{1} = c_{11}x_1 + c_{12}x_2 + c_{13}x_3 \\
\frac{\overline{x_2}}{2} = c_{21}x_1 + c_{22}x_2 + c_{23}x_3 \\
\frac{\overline{x_1}}{1} = c_{31}x_1 + c_{32}x_2 + c_{33}x_3
\end{cases}$$
(11)

Determinant q^z has a one-to-one correspondence between the points of the form $f(x_1, x_2, x_3) = m$ and the points of the form $\theta(\overline{x_1}, \overline{x_2}, \overline{x_3}) = m$ with the same form and with the same condition y > 0. By (1) and (2) we can choose the integers b'_1, b'_2, b'_3 such that

$$f(b'_1, b'_2, b'_3) \equiv m \pmod{hq^z}, (b'_1, b'_2, b'_3) \equiv (b_1, b_2, b_3) \pmod{h}$$
 (12)

Consider the integers b'_1 , b'_2 , b'_3 in the equations

$$b'_i = \sum_{i=1}^{3} c_{ij} \overline{b}_j (i = 1, 2, 3)$$
 (13)

Thenby (Ben [5]), we have

And by comparing we can say that

$$\theta(\overline{x_1}, \overline{x_2}, \overline{x_3}) \equiv m \pmod{2^3 d_1^2 km}$$

has a primitive solution. Therefore, according to the preceding result the primitive representations of the number m > xg(-km) by form θ with the additional condition

$$(\overline{x_1}, \overline{x_2}, \overline{x_3}) \equiv (b'_1, b'_2, b'_3) \pmod{hq^{z'}}$$
 (14)

Let $(\overline{x_1}, \overline{x_2}, \overline{x_3})$ be one of the point. Then the point $(\overline{x_1}, \overline{x_2}, \overline{x_3})$ according to (11) corresponds to the point (x_1,x_2,x_3) , thus we have

$$x_i = \frac{1}{q^{z'}} \sum_{i=1}^{3} \overline{c_{ij}} \overline{x_j} (i = 1, 2, 3)$$
 (15)

where $\overline{c_{ij}}$ is the cofactor of the element c_{ij} in the matrix (c_{ij}) . On comparing the equalities (15), (13) and (14) give us

$$x_i = \frac{1}{q^z} \sum_{i=1}^3 \overline{c_{ij}} \overline{x_j} \equiv \frac{1}{q^z} \sum_{i=1}^3 \overline{c_{ij}} \ b'_j = \frac{1}{q^z} \sum_{i=1}^3 \overline{c_{ij}} \sum_{\lambda=1}^3 c_{j\lambda} \ \overline{b_{\lambda}} = \overline{b}_i \equiv b_i \pmod{h}$$

Therefore (x_1, x_2, x_3) is an integral representation of a primitive *m* by the form f satisfying (4). For different $(\overline{x_1}, \overline{x_2}, \overline{x_3})$ we have different (x_1, x_2, x_3) . Thus, we have proved (5) in the last case. Hence, the theorem is proved.

REFERENCES

- Burton David M.(2010), Elementary Number Theory, 6th Ed., Tata McGraw-Hill.
- Chetna and Singh H., Representations by quadratic forms: a review of significant developments, International Journal of Education and applied research (IJEAR), 5(2), July - Dec 2015.
- Chetna and Singh H., Representation of numbers divisible by sufficiently large squares, Engineering Sciences 3. International Research Journal, 3(2), 2015.
- Chetna, Representation By The Form With Odd Prime Invariants, International Journal of Creative Research Thoughts6(2), April 2018: http://www.ijcrt.org/IJCRT1892322.pdf
- Kane Ben, Representations of integers by ternary quadratic forms, Int. J. Number Theory, 6(1), 2010. 5.
- Oh Byeong-Kweon, Regular positive ternary quadratic forms, ActaArith., 14(3), (2011), 236-241. 6.
- 7. Shimura Goro, Arithmetic of quadratic forms, Springer-Verlag New York, Inc. (2010).