Convex topological Space and some Continuous functions

Bijoy Samanta

Assistant Professor in Mathematics, Department of Mathematics , Shibpur Dinobundhoo Institution (College), 412/1, G.T. Road (S), Shibpur, Howrah – 711 102, W.B., India.

Received: July 05, 2018

Accepted: August 16, 2018

ABSTRACT Some continuous functions has been introduced using both the topology τ and convexity C on the same underlying set X where (X, τ, C) is termed as convex topological space and inter relation with examples among them are also investigated.

Keywords: Convex topological space, $\tau - C$ semi compatible, $\delta - C$ continuous function, $\theta - C$ continuous function, almost C continuous function. **AMS Subject Classification**: 52A01, 54C10.

1. Introduction : The development of "abstract convexity" has emanated from different sources in different ways ; the first type of development basically banked on generalization of particular problems such as separation of convex sets [3], extremality [4], [2] or continuous selection [12]. The second type of development lay before the reader such axiomatizations , which in every case of design , express particular point of view of convexity . With the view point of generalized topology which enters into convexity via the closure or hull operator , Schmidt [1953] and Hammer [1955], [1963], [1963b] introduced some axioms to explain abstract convexity . The arising of convexity from algebraic operations and the related property of domain finiteness receive attentions in Birchoff and Frink [1948], Schmidt [1953], Hammer [1963].

In [15] the author has discussed "Topology and Convexity on the same set" and introduced the compatibility of the topology with a convexity on the same underlying set. At the very early stage of this paper we have set aside this concept of compatibility and started just with a triplet (X, τ, C) and call it convex topological space only to bring back "compatibility" in another way subsequently. With this compatibility, Van De Val has called the triplet (X, τ, C) a topological convex structure.

In this paper , Art. 2 deals with some early definitions , results and in Art. 3 we have discussed mainly inter relation among different types of continuous functions .

2. Prerequisites :

Definition 2.1 : [15] Let X be a non empty set. A family C of subsets of the set X is called a convexity on X if

- **1.** ϕ , $X \in C$
- **2.** C is stable for intersection , i.e. if $D \subseteq C$ is non empty , then $\cap D \in C$
- **3.** C is stable for nested unions , i.e. if $D \subseteq C$ is non empty and totally ordered by set inclusion , then $\cup D \in C$.

The pair (X, C) is called a convex structure. The members of C are called convex sets and their complements are called concave sets.

Definition 2.2 : [15] Let C be a convexity on set X. Let $A \subseteq X$. The convex hull of A is denoted by co(A) and defined by $co(A) = \cap \{C : A \subseteq C \in C\}$.

Note 2.3 : [15] Let (X, C) be a convex structure and let Y be a subset of X. The family of sets $C_Y = \{C \cap Y : C \in C\}$ is a convexity on Y; called the relative convexity of Y.

Note 2.4 : [15] The hull operator co_Y of a subspace (*Y*, C_Y) satisfy the following :

 $\forall A \subseteq Y : co_Y(A) = co(A) \cap Y.$

Definition 2.5: [5] Let (X, τ) be a topological space and let C be a convexity on X. Then the triplet (X, τ, C) is called a convex topological space (CTS in short).

Theorem 2.6: [5] Let (X, τ, C) be a convex topological space. Let A be a subset of X. Consider the set A_* , where A_* is defined as follows : $A_* = \{x \in X : co(U) \cap A \neq \emptyset, x \in U \in \tau\}$. Then the collection $\tau_* = \{A^c : A \subseteq X, A = A_*\}$ is a topology on X such that $\tau_* \subseteq \tau$.

Note 2.7: [5] In a convex topological space (X, τ, C) a subset A of X is said to be τ_* -closed if $A = A_*$. **Definition 2.8**: [5] Let (X, τ, C) be a convex topological space. The space (X, τ, C) is called $\tau - C$ semi compatible if for every $A \in \tau$, A_* is a τ_* -closed set, i.e. if $A \in \tau$, then $(A_*)_* = A_*$. **Definition 2.9:** [5] Let (X, τ, C) be a convex topological space and A be a subset of X. Then A is said to be an R - C open set if $int(A_*) = A$.

A subset B is called an R - C closed if B^c is an R - C open set.

Definition 2.10: [7] Let (X, τ, C) be a convex topological space. Let S be a subset of X and $x \in X$.

- (a) x is called δC cluster point of S if $S \cap int(U_*) \neq \emptyset$, for each open nbd. U of x. (b) The family of all $\delta - C$ cluster points of S is called the $\delta - C$ closure of S and is denoted by
 - $[S]_{\delta-c}$.
- (c) A subset *P* of *X* is called δC closed if $[P]_{\delta C} = P$.
- The complement of a δC closed set is said to be a δC open set.

Theorem 2.11: [7] Let (X, τ, C) be a convex topological space which is $\tau - C$ semi compatible. Then we have the following properties :

- (1) If A is an open set, then $int(A_*)$ is an R C open set.
- (2) If A and B are R C open sets, then so is $A \cap B$.
- (3) If A is an R C open set, then A is a regular open set.
- (4) $A \subseteq [A]_{\delta \mathcal{C}}$.
- (5) If A is an R C open set, then it is a δC open set.

(6) Every $\delta - C$ open set is the union of family of R - C open sets.

Theorem 2.12: [7] Let A and B be subsets of a convex topological space (X, τ , C) which is τ – C semi compatible. Then the following properties hold :

- (1) $A \subseteq B \Rightarrow [A]_{\delta \mathcal{C}} \subseteq [B]_{\delta \mathcal{C}}$.
- (2) $[A]_{\delta-\mathcal{C}} = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \delta \mathcal{C} \text{ closed} \}.$
- (3) If A_{α} is δC closed sets of *X* for each $\alpha \in \Lambda$, then so is $\bigcap_{\alpha \in \Lambda} (A_{\alpha})$.
- (4) $[A]_{\delta-C}$ is $\delta-C$ closed set.

Remark 2.13: [7] [A]_{$\delta-C$} is the smallest $\delta - C$ closed set containing A.

Theorem 2.14 : [7] Let (X, τ, C) be a convex topological space which is $\tau - C$ semi compatible. Let $\tau_{\delta-\mathcal{C}} = \{A \subseteq X : A \text{ is a } \delta - \mathcal{C} \text{ open set in } X\}$. Then $\tau_{\delta-\mathcal{C}}$ is a topology on X such that $\tau_{\delta-\mathcal{C}} \subseteq \tau$.

Definition 2.15: [8] Let (X, τ, C_1) and (Y, σ, C_2) be two convex topological spaces. A function $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$ is said to be $\delta - C$ continuous if for each $x \in X$ and each open nbd. V of f(x), there exists an open nbd. U of x such that $f(int(U_*)) \subseteq int(V_*)$.

Theorem 2.16 : [8] Let (X, τ, C_1) and (Y, σ, C_2) be two convex topological spaces where (X, τ, C_1) is $\tau - C_1$ semi compatible and (Y, σ, C_2) is $\sigma - C_2$ semi compatible. For a function $f: (X, \tau, C_1) \rightarrow (Y, \sigma, C_2)$ the following are equivalent:

- 1. f is δC continuous.
- 2. For each $x \in X$ and each R C open set V containing f(x), there exists an R C open set containing x such that $f(U) \subseteq V$.
- 3. $f([A]_{\delta-\mathcal{C}}) \subseteq [f(A)]_{\delta-\mathcal{C}}$, for each $A \subseteq X$.
- $[f^{-1}(B)]_{\delta-\mathcal{C}} \subseteq f^{-1}([B]_{\delta-\mathcal{C}})$, for every $B \subseteq Y$. 4.
- 5. For every δC closed set F of Y, $f^{-1}(F)$ is δC closed set in X. 6. For every δC open set V of Y, $f^{-1}(V)$ is δC open set in X. 7. For every R C open set V of Y, $f^{-1}(V)$ is δC open set in X.

- 8. For every R C closed set F of Y, $f^{-1}(F)$ is δC closed set in X.

Corollary 2.17: [8] Let (X, τ, C_1) and (Y, σ, C_2) be two convex topological spaces where (X, τ, C_1) is $\tau - C_1$ semi compatible and (Y, σ, C_2) is $\sigma - C_2$ semi compatible. A function $f: (X, \tau, \mathcal{C}_1) \to (Y, \sigma, \mathcal{C}_2)$ is $\delta - \mathcal{C}$ continuous iff $f: (X, \tau_{\delta - \mathcal{C}_1}) \to (Y, \sigma_{\delta - \mathcal{C}_2})$ is continuous.

3. Comparison of different types of continuous functions :

Definition 3.1: Let (X, τ, C_1) and (Y, σ, C_2) be two convex topological spaces. A function $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$ is said to be strongly $\theta - C$ continuous [respectively $\theta - C$ continuous , almost C continuous] if for each $x \in X$ and each open nbd. V of f(x) , there exists an open nbd. U of x such that $f(U_*) \subseteq V$ [respectively $f(U_*) \subseteq V_*$, $f(U) \subseteq int(V_*)$].

Theorem 3.2: (a) If a function $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$ is strongly $\theta - C$ continuous and $g:(Y, \sigma, \mathcal{C}_2) \to (Z, \gamma, \mathcal{C}_3)$ is almost \mathcal{C} continuous, then $g \circ f:(X, \tau, \mathcal{C}_1) \to (Z, \gamma, \mathcal{C}_3)$ is $\delta - \mathcal{C}$ continuous.

(b) The following implications hold :

strongly $\theta - C$ continuous $\Rightarrow \delta - C$ continuous \Rightarrow almost C continuous.

Proof: (a) Let $x \in X$ and W be any open set containing $(g \circ f)(x)$. Since g is almost C continuous, there exists an open nbd. V of f(x) in Y such that $g(V) \subseteq int(W_*)$. Again since f is strongly $\theta - C$ continuous, there exists an open nbd. U of x in X such that $f(U_*) \subseteq V$. So we get $g(f(U_*)) \subseteq g(V)$. Now $g(f(int(U_*))) \subseteq g(f(U_*)) \subseteq g(V) \subseteq int(W_*) \Rightarrow (g \circ f)(int(U_*)) \subseteq int(W_*)$. Hence $g \circ f$ is $\delta - C$ continuous.

(b) Let f be strongly $\theta - C$ continuous. Also let $x \in X$ and V be any open nbd. of f(x). Then there exists an open nbd. U of x in X such that $f(U_*) \subseteq V$. Now $f(int(U_*)) \subseteq f(U_*) \subseteq V = int(V) \subseteq int(V_*)$. Hence f is $\delta - C$ continuous.

Again let f be $\delta - C$ continuous. Also let $x \in X$ and V be any open nbd. of f(x) in Y. Then there exists an open nbd. U of x in X such that $f(int(U_*)) \subseteq int(V_*)$. Now $U = int(U) \subseteq int(U_*) \Rightarrow f(U) \subseteq Int(U_*) \Rightarrow Int(U_*) \Rightarrow$ $f(int(U_*)) \subseteq int(V_*)$. Thus f is almost C continuous.

Remark 3.3: The following examples show that none of these implications in the above Theorem 3.2 is reversible.

Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$, $C_1 = \{\phi, X\}$, $\sigma = \{\phi, X, \{b\}\}$, $C_2 = \{\phi, X, \{b\}\}$ Example 3.4 : $\{\phi, X\}$ and the function $f: (X, \tau, C_1) \rightarrow (X, \sigma, C_2)$ be the identity function on X i.e., $f = I_X$. Here *f* is $\delta - C$ continuous but not strongly $\theta - C$ continuous.

Since for any $V \in \sigma$, we have $V_* = X$, we conclude that f is $\delta - C$ continuous. Consider the point bin (X, τ , C_1). Now { b } is an open nbd. of b = f(b) in (X, σ , C_2). But there is no open nbd. U of b in (X, τ, C_1) such that $f(U_*) \subseteq \{b\}$. Hence f is not strongly $\theta - C$ continuous.

Example Let $X = \{ a, b, c \} , \tau = \{ \phi, X, \{ a \} \} , C_1 = \{ \phi, X \}$ 3.5 : $\sigma = \{ \phi, X, \{a\}, \{b\}, \{a, b\} \}, C_2 = \{ \phi, X, \{b\} \}, \text{ and the function } f: (X, \tau, C_1) \to (X, \sigma, C_2) \text{ be}$ the identity function on X. Here f is almost C continuous but not $\delta - C$ continuous function.

Clearly f is almost C continuous function. Now consider the point a in (X, τ, C_1) and $V = \{a\}$ be an open nbd. of a = f(a) in (X, σ, C_2) . In (X, σ, C_2) , we have $int(V_*) = int(\{a\}_*) = int(\{a, c\}) = \{a\}$. Again in (X, τ, C_1) open nbd. of $\{a\}$ are $\{a\}$ and X and $int(\{a\}_*) = int(X) = X$, $int(X_*) = X$. Thus there is no open nbd. of U of a in (X, τ, C_1) such that $f(int(U_*)) \subseteq int(V_*)$. Hence f is not $\delta - C$ continuous function.

Definition 3.6: A convex topological space (X, τ, C) is said to be an SC - R space if for each $x \in X$ and each open nbd. *V* of *x* there exists an open nbd. *U* of *x* such that $x \in U \subseteq int(U_*) \subseteq V$.

Theorem 3.7 : For a function $f : (X, \tau, C_1) \rightarrow (Y, \sigma, C_2)$ the following properties are true :

(a) If Y is an SC - R space and f is $\delta - C$ continuous, then f is continuous.

(b) If X is an SC - R space and f is almost C continuous, then f is $\delta - C$ continuous.

Proof: (a) Let Y be an SC - R space and $x \in X$. Then for each open nbd. V of f(x), there exists an open nbd. W of f(x) such that $f(x) \in W \subseteq int(W_*) \subseteq V$. Since f is $\delta - C$ continuous, there exists an open nbd. U of x such that $f(int(U_*)) \subseteq int((W_*)$. Since U is an open set, $f(U) = f(int(U)) \subseteq f(int(U_*)) \subseteq$ $int(W_*) \subseteq V$ i.e., $f(U) \subseteq V$. Hence f is continuous.

(b) Let $x \in X$ and V be an open nbd. of f(x). Since f is almost C continuous, there exists an open nbd. U of x such that $f(U) \subseteq int(V_*)$. Again since X is an SC - R space there exists an open nbd. W of x such that $int(W_*) \subseteq U$. Thus $f(int(W_*)) \subseteq f(U) \subseteq int(V_*)$. Hence f is $\delta - C$ continuous.

Corollary 3.8: If (X, τ, C_1) and (Y, σ, C_2) are SC - R spaces, then the concepts on a function

 $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$, $\delta - C$ continuity, continuity, almost C continuity are equivalent. **Definition 3.9:** A function $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$ is said to be almost C - open if for each R - Copen set U in X, f(U) is open in Y.

Theorem 3.10: If a function $f: (X, \tau, C_1) \to (Y, \sigma, C_2)$ is $\theta - C$ continuous and almost C - openwhere (X, τ, C_1) is $\tau - C_1$ semi compatible, then f is $\delta - C$ continuous.

Proof: Let $x \in X$ and V be an open nbd. of f(x). Since f is $\theta - C$ continuous, there exists an open nbd. U of x such that $f(U_*) \subseteq V_*$. Thus $f(int(U_*)) \subseteq f(U_*) \subseteq V_*$. Now $int(U_*)$ is an R - C open set in X. Since f is almost C – open, $f(int(U_*))$ is an open set in Y which is contained in V_* . So we have, $f(int(U_*)) \subseteq int(V_*)$. Hence f is a $\delta - C$ continuous function.

References :

- 1. G. Birkhoff and O. Frink; Represents of lattices by sets, Trans. Amer. Math. Soc., 64 (1948), 229 315.
- E. B. Davies; A generalized theory of convexity, Proc. London Math. Soc., 17 (1967), 644 652. 2.

- 3. J. W. Ellis ; A general set separation theorem , Duke Math. J. , 19 (1952), 417 421.
- 4. K. Fan; On the Krein Milman Theorem, Proc. Symp. Pure Math., 7 (1963), 211 221.
- 5. S. Ganguly and Bijoy Samanta ; Some functions related to convex topological spaces , Rev. Acad. Canar. Cienc. , 18 (2006) , 9 21 .
- 6. S. Ganguly and Bijoy Samanta ; θC somewhat continuous function , Rev. Acad. Canar. Cienc. , 20 (2008), 63–73
- 7. Bijoy Samanta ; Some open sets in Convex topological Space , International Journal of Research and Analytical Reviews , Communicated .
- 8. Bijoy Samanta ; A continuous function on Convex topological Space , International Journal of Research and Analytical Reviews , Communicated .
- 9. P. C. Hammer ; General topology , symmetry and convexity , Trans . Wisc. Acad. Sci. Arts Lett. 44 (1955) , 221 255 .
- 10. P. C. Hammer ; Extented topology ; domain finiteness , Indag. Math. , 25 (1963) , 200 212 .
- 11. P. C. Hammer; Semi spaces and the topology from convexity, Proc. Symp. Pure Math., 7 (1963), 305 316.
- 12. E. Michael ; Convex structure and continuous selection , Canadian J. Math. , 11 (1959), 556 575.
- 13. J. Schmidt ; Einige grundlegendle Begriffe und Satze aus der Theorie der Hullenoperatoren , Bericht Uber die Mathematiker Tagung in Berlin , (1953), 21 48.
- 14. M. van de Vel ; A selection theorem for topological convex structures , Trans. Amer. Math. Soc. , 336 (2) , (1993) , 463 496.
- 15. M. L. J. Van De Vel; Theory of convex structures, North Holland, 1993.