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1. Introduction : The development of “abstract convexity” has emanated from different sources in
different ways ; the first type of development basically banked on generalization of particular problems such
as separation of convex sets [ 3 ], extremality [ 4 ], [ 2 ] or continuous selection [ 12 ] . The second type of
development lay before the reader such axiomatizations , which in every case of design, express particular
point of view of convexity . With the view point of generalized topology which enters into convexity via the
closure or hull operator , Schmidt [ 1953 ] and Hammer [ 1955 ], [ 1963 ], [ 1963b ] introduced some
axioms to explain abstract convexity . The arising of convexity from algebraic operations and the related
property of domain finiteness receive attentions in Birchoff and Frink [ 1948], Schmidt [ 1953 |, Hammer [
1963 ].

In [ 15 ] the author has discussed “ Topology and Convexity on the same set” and introduced the
compatibility of the topology with a convexity on the same underlying set . At the very early stage of this
paper we have set aside this concept of compatibility and started just with a triplet (X ,t,C) and call it
convex topological space only to bring back “compatibility” in another way subsequently . With this
compatibility , Van De Val has called the triplet (X,t,C) atopological convex structure .

In this paper , Art. 2 deals with some early definitions , results and in Art. 3 we have discussed
mainly inter relation among different types of continuous functions .

2. Prerequisites:
Definition 2.1: [ 15] Let X be a non empty set. A family C of subsets of the set X is called a convexity on
X if

1. ¢, X ecC

2. C is stable for intersection, i.e. if D € C isnon empty,thennND € C

3. C is stable for nested unions, i.e. if D € C is non empty and totally ordered by

setinclusion,then UD € C .
The pair (X,C) is called a convex structure . The members of C are called convex sets and their
complements are called concave sets .
Definition 2.2 : [ 15] Let C be a convexity onset X .Let A € X . The convex hull of A is denoted by
co(A) and defined by co(4) =n{C: A< C € C}.
Note 2.3 : [ 15 ] Let (X,C) be a convex structure and let Y be a subset of X . The family of sets
Cy ={CNY:C €} isaconvexity on Y; called the relative convexity of Y.
Note 2.4 : [ 15 ] The hull operator coy of a subspace (Y ,Cy ) satisfy the following :
VACY: coy(A) =co(A)NY.

Definition 2.5 : [ 5] Let (X,t) be a topological space and let C be a convexity on X . Then the triplet
(X ,7,C)is called a convex topological space ( CTS in short).
Theorem 2.6 : [ 5] Let (X,t,C) be a convex topological space . Let A be a subset of X . Consider the set
A, , where A, is defined as follows : A, ={x € X:co(U)NnA+# @,x €U €t} . Then the collection 7, =
{A°: Ac X,A = A} isatopology on X suchthat 7, S 7.
Note 2.7 : [ 5] In a convex topological space (X,7,C) asubset A of X issaidtobe t,-closedif A =A4,.
Definition 2.8 : [ 5] Let (X,7,C) be a convex topological space . The space (X,7,C) iscalled 7—C
semi compatible if for every A € 7, A, isa t,-closed set,i.e.if A € t,then (4,), = A4, .
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Definition 2.9: [5] Let (X ,t,C ) beaconvex topological space and A be a subsetof X. Then 4 issaid
tobean R — C opensetif int(4,) =A.
A subset B iscalledan R — C closed if B€isan R — C open set.
Definition 2.10:[ 7] Let (X,7,C) beaconvex topological space.Let S beasubsetof X and x € X.
(a) x iscalled § — C cluster point of S if Snint(U,) # @, for each open nbd. U of x.
(b) The family of all § — C cluster points of S is called the § — C closure of S and is denoted by
[STs5-c -
(c) Asubset Pof X iscalled § — C closedif [P]s_o=P.
The complement ofa § — C closed set is said to bea § — C open set.
Theorem 2.11:[7] Let (X,7,C) be a convex topological space which is 7 — C semi compatible . Then
we have the following properties :
(1) If A isanopen set,then int(4,) isan R — C open set.
(2) If A and B are R — C opensets,thensois ANB.
(3) If A isanR — C open set, then A is aregular open set.
(4) Ac[Als—c -
(5) If A isanR — C open set, thenitisa § — C open set.
(6) Every § — C open set is the union of family of R — C open sets.
Theorem 2.12: [ 7] Let Aand B be subsets of a convex topological space (X, t,C ) whichis 7 — C semi
compatible . Then the following properties hold :
(1) ASB= [Als¢ < [Bls—c-
(2) [Als.e=N{FSX:ASFand Fis 6§ —C closed}.
(3) If A, is § — C closed sets of X foreach a € A,thensois Ngep(4y) -
(4) [Als_c is 6 — C closed set.

Remark 2.13 :[ 7] [A]s—c is the smallest § — C closed set containing A .

Theorem 2.14 : [ 7] Let (X,7,C) be a convex topological space which is 7 — C semi compatible . Let
Ts_e ={ASX:Aisa 6§ —Copensetin X}.Then t5_ isatopologyon X suchthat 5.0 S 7 .

Definition 2.15: [ 8] Let (X, 7,6;)and (Y, 0,C,) be two convex topological spaces. A function
f:(X,7,6,) - (Y, 0,C,) issaid to be § — C continuous if for each x € X and each open nbd. V of
f(x), there exists an open nbd. U of x such that f(int(U.)) € int(V.).

Theorem 2.16 : [ 8 ] Let (X, t,C;) and (Y, 0,C,) be two convex topological spaces where
(X, 7,6,) is t—C; semi compatible and (Y, 0,C,) is o —C, semi compatible . For a function
f:(X,7,6,) = (Y, 0,C,) thefollowing are equivalent:

1. f is 6§ —C continuous.

2. For each x €X and each R —C open set V containing f(x) , there exists an R —C open set
containing x suchthat f(U)C V.

3. f([Als—¢) € [f(A)] s_c,foreach AC X.

4. [f7Y(B))s—c € fY([B]l s_c) ,forevery BC Y.

5. Forevery § — Cclosedset F of Y, f~(F) is 6§ — C closed setin X .

6. Forevery § —Copenset V of Y, f~1(V) is § — C opensetin X.

7. Forevery R— Copenset V of Y, f71(V) is § — C opensetin X .

8. Forevery R — Cclosedset F of Y, f71(F) is § — C closed setin X.
Corollary 2.17 : [ 8 ] Let (X, t,6;) and (Y, 0,C,) be two convex topological spaces where
(X, t,6;) is t—0C; semi compatible and (Y, 0,C,) is o —C, semi compatible . A function
f:(X,7,6,) =(Y, 0,C;) is § — C continuous iff f: (X,T,g_el) - (Y,05-¢,) Is continuous .

3. Comparison of different types of continuous functions :

Definition 3.1 : Let (X, 7,6,) and (Y, 0,C,) be two convex topological spaces . A function
f:(X,7,6,) - (Y, 0,C,) is said to be strongly 8 — C continuous [ respectively 6 —C
continuous, almost C continuous ] if for each x € X and each open nbd. V of f(x), there exists an open
nbd. U of x suchthat f(U,) €V [respectively f(U) <V, , f(U)cint(V,) ].

Theorem 3.2 : (a) If a function f: (X, t,C;) = (Y, 0,C,) is strongly 8 —C continuous and
g:(Y,o,6,)—>(Z,y,C3) is almost C continuous , then gof:(X, t,6,)—=>(Z,y,C3) is §—-C
continuous.
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(b) The following implications hold :

strongly 6 — C continuous = § — C continuous = almost C continuous .
Proof: (a) Let x € X and W be any open set containing (g o f)(x) . Since g is almost C continuous,
there exists an open nbd. V of f(x) in Y such that g(V) € int(W,) . Again since f is strongly 6 —C
continuous, there exists an open nbd. U of x in X such that f(U,) €V .So we get g(f(U*)) c g(V).Now

g (f(int(U*))) cg(fU)) cgWV) cintW,) = (go f)(int(U,)) S int(W.). Hence gof is &-C
continuous.

(b) Let f be strongly 8 — C continuous . Also let x € X and V be any open nbd. of f(x). Then there exists
an open nbd. U of x in X suchthat f(U,) €V .Now f(int(U*)) c f(U,) cV =int(V) < int(V,) . Hence
f is & — C continuous .

Again let f be § — C continuous . Also let x € X and V be any open nbd. of f(x) in Y. Then there exists
an open nbd. U of x in X such that f(int(U*)) cint(V,) . Now U =int(U) cint(U,) = f(U) <
f(int(U,)) € int(V.) . Thus f is almost C continuous .

Remark 3.3 : The following examples show that none of these implications in the above Theorem 3.2 is
reversible .

Example 34 : Let X={a,b,c}, t={¢, X, {a}}, C={¢, X}, o={¢, X,{b}}, C,=
{¢, X} andthe function f: (X, 7,C;) —» (X, a,C,) be the identity function on X i.e., f =I;. Here
f is 6 — C continuous but not strongly 8 — C continuous .

Since for any V € o, we have V, = X, we conclude that f is § — C continuous . Consider the point b
in(X, 7,6;).Now {b }isan opennbd. of b = f(b)in (X, o,C,). But there is no open nbd. U of b in
(X, t,C;) suchthat f(U,) € {b}.Hence f isnotstrongly 8 — C continuous .

Example 3.5 : Let X={a,b,c}, t={¢, X.{a}}, ci={9¢, X} ,
o={¢, X, {a},{b} {a,b}}, C;={¢, X,{b}}, and the function f: (X, 7,6,) - (X, 0,C;) be
the identity function on X .Here f isalmost C continuous but not § — C continuous function .

Clearly f is almost C continuous function. Now consider the point a in (X, 7,6;) and V ={a} bean
opennbd. of a = f(a) in (X, 0,C;). In(X, 0,C;),wehave int(V,) = int({a},) = int({a,c}) ={a}.
Againin (X, 7,C;) opennbd.of {a} are {a} and X and int({a},) = int(X) =X , int(X,) = X . Thus
there is no open nbd. of U of a in (X, t,C;) suchthat f(int(U,)) € int(V.) . Hence f isnot § —C
continuous function .

Definition 3.6 : A convex topological space (X ,t,C) issaid tobe an SC — R space if for each x € X and
each open nbd. V of x there exists an open nbd. U of x suchthat x € U € int(U,) S V.
Theorem 3.7 : Fora function f: (X, 7,6;) = (Y, o,C,) the following properties are true :

(@) If Y isan SC — R spaceand f is § — C continuous, then f is continuous.

(b) If X isan SC — R space and f is almost C continuous, then f is § — C continuous.
Proof: (a) Let Y bean SC — R space and x € X . Then for each open nbd. V' of f(x), there exists an open
nbd. W of f(x) suchthat f(x) € W < int(W,) SV .Since f is § — C continuous, there exists an open
nbd. U of x such that f(int(U*)) c int((W,) . Since U is an open set, f(U) = f(int(U)) c f(int(U*)) c
int(W,) €V i.e., f(U) SV .Hence f iscontinuous.
(b) Let x € X and V be an open nbd. of f(x).Since f is almost C continuous, there exists an open nbd.
U of x suchthat f(U) € int(V,) . Again since X is an SC — R space there exists an open nbd. W of x
such that int(W,) € U . Thus f(int(WJ) c f(U) c int(V,).Hence f is § — C continuous .
Corollary 3.8: If (X, 7,6;) and (Y, 0,C,) are SC— R spaces, then the concepts on a function
f:(X,7,6;) »(Y, 0,C;), 6 —C continuity, continuity , almost C continuity are equivalent .
Definition 3.9 : A function f: (X, 7,6,) = (Y, 0,C,) issaid to be almost C — open if foreach R —C
openset U in X, f(U) isopenin Y.
Theorem 3.10 : Ifa function f: (X, 7,6,) = (Y, 0,C,) is 6 — C continuous and almost C — open
where (X, t,C;)is T — C; semi compatible, then f is § — C continuous.
Proof: Let x € X and V be an open nbd. of f(x).Since f is 8 — C continuous, there exists an open nbd.
U of x suchthat f(U,) €V,.Thus f(int(U*)) cf(U,)cV, .Now int(U,) isan R —C opensetin X.
Since f is almost C — open , f(int(U*)) is an open set in Y which is contained in V, . So we have
f(int(U*)) c int(V,) .Hence f isa § — C continuous function .
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