Optimization on Microbial Production of Polyhydroxybutyrate (PHB): A Review

Punniavan Sakthiselvan1* & Ramasamy Madhumathi2
1*Assistant Professor, Department of Bio-Engineering, School of Engineering, VELS Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600 117, Tamil Nadu, India.
2Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai 600 025, Tamil Nadu, India.

Received: September 13, 2018 Accepted: October 30, 2018

ABSTRACT: Plastic is considered to be an individual gift of modern science and technology to mankind. This unique wonder material has some mutually exclusive qualities of being very light, yet strong and economical. The mammoth scale of the use of plastics and their disposal has threatened natural environment. Nowadays, plastics and synthetic polymers are mainly produced from petro-chemical elements, which do not decompose, thus resulting in the environmental pollution. They are stored, burnt and recycled. During combustion, water and carbon dioxide are released into the atmosphere. In household waste, 30 percent are plastic-packaging foil, like food bags or coated foil on paper. The reorganization of environmental pollution problem caused by synthetic plastics has led to the search of alternative materials-the biodegradable plastics. Biodegradable plastics of renewable resources origin also help to preserve the non-renewable resources and contribute to sustainable development. In recent years, there has been an increasing trend towards more efficient utilization of relatively cheaper substrates for Polyhydroxybutyrate (PHB) biosynthesis (via) formation. Finding a less expensive substrate is, therefore, a major need for a wide commercialization of PHB. Production processes based on waste carbon sources are the requirement of the day, instead of hobble one. In biotechnological aspects, cheap substrate and genetically modified high PHB yielding bacteria or plants can be used in the biopolymer production technique.

Key Words: Environmental pollution, Biopolymer, Polyhydroxybutyrate, Microbes, Plants.

INTRODUCTION

In recent years, sustainability, environmental concerns and green chemistry have played a big role in guiding the development of the next generation of materials, products and processes. The persistence of plastics in the environment, dwindling petroleum resources, shortage of landfill space and the concerns over emissions of toxic gases during incineration have fuelled efforts to develop biodegradable polymers from renewable resources[1]. Particularly, renewable agricultural and biomass feedstock have shown much promise for use in eco-efficient packaging to replace petroleum feedstock without competing with food crops.

Polyhydroxalkanoates (PHAs) is natural and linear polyesteric biological macromolecules that can be produced by several microorganisms in the form of intracellular carbon and energy storage granules in response to excess carbon substrate and limited quantities of nitrogen source in growth environment. They are also completely degraded into carbon dioxide and water by the depolymerises present in the microorganisms[2]. Polyhydroxybutyrate (PHB) was the first type of PHAs discovered and the most widely studied. PHB share many material properties similar to synthetic polymers, along with exclusive properties such as biodegradable, biocompatible and can be obtained from renewable sources, but its production costs are higher than the petroleum derived plastics [3].

ISOLATION, DETECTION AND ANALYSIS

Microorganisms that Produce PHA

A wide variety of bacterial species are known to accumulate PHA [4]. PHA has been reported from various environments such as soil, sewage sludge, marine sediments, ponds, mangrove environments [5] and Gas field soil [6]. Microorganisms that produce PHA are discussed with respect to two aspects viz. microbiological and basic genetic makeup of the organism and the economic aspects for PHA production [7].

Oxygen limitation

During oxygen limitation nicotinamide nucleotides are not oxidized. This will result in decrease of effectiveness of TCA cycle and activity of citrate synthase and isocitrate dehydrogenase is decreased by NADH. Thus acetyl-Co A accumulates and there is a low intracellular concentration of free CoA. Increase in
Phosphorus and magnesium limitation

During phosphorus and magnesium limitation, PHA accumulates from the beginning of the cell growth. Magnesium ions are known to increase the growth rate and phosphorus is an essential nutrient for the living organism, which is required for the regulation of the physiological state and energy metabolism. It would not be possible to achieve high mass and PHB content at low levels of phosphorus. As phosphate does not participate directly in protein composition, its limitation will allow residual cell growth for some time [8]. Phosphorus is involved in recycling of energetic intermediates i.e. ATP /ADP. In its deficiency, there is a demand from NADP and hence will lead to PHA production.

Nitrogen limitation

If nitrogen is limiting then acetyl-CoA and NAD (P) H are restricted. Liberated NAD (P) H cannot be consumed for reductive synthases, i.e. for amino acid synthesis. As there is absence of protein synthesis, acetyl-CoA will be channeled into PHB synthesis. For effective synthesis of PHA, Acetyl-CoA and NADPH are necessary. The intracellular concentration of acetyl-CoA should be high. The flux of acetyl- CoA either towards the TCA cycle for cell growth or PHB biosynthesis pathway for energy storage has been controlled by NADPH/NADP ratio. An elevated level of NADPH significantly enhances PHB accumulation [9].

PHB production by bacteria

The isolation of PHA producing bacteria and characterized the potent PHA producer as Sphingomonas sp. as confirmed by 16s rDNA sequencing. In their study, the strain was grown on different sugars and organic acids and its ability to accumulate PHA was analyzed. The strain could accumulate PHA when grown on disaccharides, aldohexose, sugaralcohols and some organic acids, but failed to assimilate ketoses, pentoses and starch. Among the sugars tested, PHA yield was found to be high with sucrose or mannose, contributing to 55-60 % of cell biomass. Pal & Paul (2000)[10] isolated aerobic free-living nitrogen fixing bacteria from natural environments. Systematic screening of these isolates has indicated that nearly 70 % of isolates of the genus Azotobacter were capable of accumulating PHB. The PHB contents of majority of the strains ranged from 25-47 % of cell dry weight, while only 7 isolates accumulated PHB accounting to more than 50 % of their cell dry weight. One of the promising strains of Azotobacterchrozococcus has shown to accumulate the polymer accounting nearly to 70 % of cell dry weight, when grown under optimized conditions. A gram-positive bacterium (designated as strain INT005) isolated from a field soil that accumulated polyhydroxyalkanoate (PHA) from a grass field soil. The PHB productivities of strain INT005 were higher than those of Bacillus megaterium and Ralstoniaeutrophaat 37-45 °C and the PHA exhibited moderate thermostability. The potentialities of phototropic purple non sulphur bacteria for PHB synthesis [6]. They isolated 30 organisms from water and sludge samples collected from different water bodies of West Bengal by enriching under phototrophic microaerophilic conditions. Systematic screening of these isolates for PHB production led to the identification of five strains with PHB content ranging from 10-15 % of cell dry weight, when grown in acetate containing medium under a light intensity of 10000 lux. Carbon sources like acetate and butyrate were most suitable for PHB accumulation. However, the presence of nitrogen source in the growth medium was found to be inhibitory for PHB accumulation although the growth was enhanced. Phosphate and sulphate limiting conditions enhanced the polymer accumulation by the isolates. They also evaluated the effects of physical factors like pH, light intensity on polymer accumulation. Pseudomonas sp. 14-3, a strain isolated from Antarctic environments that accumulated large quantities of polyhydroxybutyrate (PHB) when grown on octanoate. This isolate was characterized on the basis of phenotypic features and partial sequencing of its 16s ribosomal RNA gene [11]. PHB producing bacteria isolated from different locations such as garden soil, tannery effluents, sewage sludge and field soil. They obtained higher PHB positive strains from sewage sludge and tannery effluents compared to other sources [12]. Isolation of 29 Bacillus strains from the grassland soils of Ankara, Turkey and were identified as B. brevis, B. sphaericus, B. cereus, B. megaterium, B.circulans, B. subtilis, B. licheniformis and B. coagulans. Polyhydroxybutyrate (PHB) production by these strains was determined by the spectrophotometric method, and they found that PHB production ranged from 1.06–41.67 % (w/v) depending on the dry cell dry weight. The highest PHB production and productivity percentage was found in B. brevis M6 (41.67 % w/v) [13].

PHB produccion by cyanobacteria

Synechocystis pcc6803 accumulated the PHA content was about 5 % of cell dry weight. They showed that the biosynthesis could be improved by introducing multicyclics of heterologouspha synthase gene. Nile blue A staining and freeze fracture electron microscopy revealed the presence of many PHA inclusions in the cell cytoplasm. The relatively low weight of PHA in the cyanobacterium when compared to other bacteria.
was probably due to the small size and mass. They also reported that PHA synthesizing ability of the cyanobacterium might, in fact, be quite similar to that was shown by most bacteria in nature [14].

PHA production by yeasts

An engineering of novel pathways seems to be a beneficial a stiff crystalline alternative to the production of PHBs in yeast cells were used as models to gain information on PHBs synthesis in eukaryotes. Yeasts as hosts for synthesis of PHBs have certain advantages over bacteria. Moreover, yeast like *Saccharomyces cerevisiae, Klyveromyces maximus, Candida utilis* and others, has been approved as a GRAmicroorganism by food and drug administration. PHB homopolymer production in two transgenic yeasts One of them (*Saccharomyces cerevisiae* INVSc1/PHA1) harbouring the PHB synthase genes of *R. eutrophin* its cytoplasm, while in the second (*Schizosaccharomyces pombe* Q01/PHB), PHB biosynthesis genes were integrated into the chromosome[14].

PHA production by recombinant bacteria

PHAs are commonly grouped into two major categories: the short-chain-length PHAs (PHASCL) and the medium-chain-length PHAs (PHAMCL). The repeat units of PHASCL are composed of hydroxy fatty acids having three to five carbon atoms, whereas PHAMCL contain hydroxy fatty acids repeat units with six or more carbon atoms. Because of their biodegradable and biocompatible properties, PHAs have been extensively researched as potential "green" substitutes for petroleum-derived polymers in medicine, drug-delivery, agriculture and horticulture, the fibers industry, and consumer products [15]. Escherichia coli, as the best-known bacterium, is an idea host for the production of PHAs. It is suitable as a heterologous expression host for foreign genes that can be easily manipulated and improved by means of recombinant DNA methodologies or metabolic engineering. In addition, high-cell-density cultivation strategies for numerous E. coli strains are well. Metabolic pathways of PHAs in *E. coli*, including PHASCL and PHAMCL, have already been setup since 10 years ago established.

E. coli cells that accumulate large amounts of PHASCL become fragile, facilitating the isolation and purification of the biopolymer. Furthermore, the bacterium does not express PHA-degrading enzymes [16]. The production of PHAs employing recombinant *E. coli* was restrained in both laboratory scale and industrial scale due to low efficiency and high cost. In polyhydroxybutyric acid (PHB) production, about 40% of the total production cost is for raw material [17]. Thus, the use of a cheaper carbon source is required to reduce the high production cost of PHAs, which have been successfully used in various wild strains [18]. Agriculture and its associated industries can be the major pool of these cheap carbon sources because they produce many feedstocks and co-products that are attractive raw materials for microbial production of PHAs, such whey, ice cream residue, etc. From an ecological point of view, they are renewable, whereas from an economic point of view, many of the co-products being studied are derived from surplus or low-cost processing streams [19]. Metabolic engineering is being intensely explored to introduce new metabolic pathways to broaden the utilizable substrate range, to enhance PHA synthesis and to produce novel PHA. Recombinant *E. coli* strains harbouring the *Alcaligenes eutrophus* PHA biosynthesis genes in a stable high-copy-number plasmid have been developed and used for high productivity. Since *E. coli* can utilize various carbon sources, including glucose, sucrose, lactose and xylose, a further cost reduction in PHA is possible by using cheaper substrates such as molasses, whey and hemicellulose hydrolysate. Natural PHA-producing bacteria have a long generation time and relatively low optimum growth temperature. These are often hard to lyse and also contain pathways for PHA degradation. Bacteria such as *E. coli* are incapable of synthesizing or degrading PHA; however, *E. coli* grows fast, even at higher temperature and is easy to lyse. Faster growth will enable it to accumulate a large amount of polymer. The easy lysis of the cells save the cost of the purification of PHA granules [20]. *E. coli* has been used to transfer PHA genes. PHB production has been studied mostly in recombinant *E. coli* cells harbouring PHA synthesizing genes from *R. eutrophin* [21].

PHA production in transgenic plants

Currently, PHAs for commercial applications are being produced by microbial fermentations. However, continuing efforts are being made to devise cost-effective means such as transgenic plants, to produce PHAs. Transgenic plants have always been utilized for producing genetically modified (GM) crops for food purposes and have always attracted suspicion and ethical debates. Producing PHAs in plants, on the other hand, will help connect the low cost/high-volume sustainable production capacity of crops with the vast number of developing polymer industries and should not promote much controversy. This will enable PHAs to possess both superior cost and performance factors. Many research groups have reported their attempts to produce PHAs in plant systems. The only raw materials required will be carbon dioxide for carbon and sunlight as the energy source. The overall costs would make PHA production economical. Transgenic plants containing the PHA synthase genes have been created. The transgenic plants were stunted.
but accumulated about 15% dwc (dry cell weight) of P (3HB) in the leaf expression systems. Co-polymers of 3HB and 3HV were produced in Arabidopsis and Brassica rapa. A molecular mass of was attained which is excellent for commercial applications. The production of PHAs in plastids whereas Poirier’s group targeted PHA production in seeds. Arabidopsis plants accumulated P (3HB) up to 14% of the leaf dry weight. Transgenic PHA-producing plants have also been produced using tobacco, cotton, and flax systems. However, plant systems have other disadvantages. It is difficult to produce copolymers in plant systems since the production is under the control of endogenous metabolic precursors in the plant. Similarly, the recovery of the polymer from plant tissues is a tricky and expensive affair. Researchers in Japan have also recently devised a transgenic Arabidopsis thaliana, harbouring an engineered PHA synthase gene from Pseudomonas sp. 3; fabH gene (codes for 3-ketoacyl-ACP synthase III) from E. coli and a phaABgene (codes for a ketothiolase and acetoacetyl-CoA reductase) from Cupriavidus necator and the enzymes were targeted to the plastids. A polymer consisting of 3-hydroxybutyrate unit and a small portion of 3-HA units (C5–C14) was produced. The fabHgene aided a two-fold increase in the average PHA content but the maximum PHA amount remained the same and any further increase led to stunted growth. However, the tissue-specific PHA production countered that. The same group also carried out seed-specific PHA production in rice and tuber-specific production in potato. Metabolix in alliance with British Petroleum has now successfully transferred the PHA metabolic pathway into switchgrass (Panicum virgatum). Switchgrass grows quickly, converting solar energy into chemical energy. Switchgrass also absorbs carbon dioxide from the atmosphere as it grows, thus reducing the build up of this gas in the atmosphere. They have developed a detailed biorefinery cost and engineering analysis using switchgrass, which is being used to promote large-scale PHA manufacturing. Hence, altered plant phenotypes, low productivity and transgenic stability are problems that have to be resolved before transgenic plants become the chosen mode of PHA production [22].

Screening methods for PHB accumulation in bacteria

Native PHA granules can be stained with Sudan Black B [23], Nile Blue A and Nile Red. PHAs are more specifically stained by Nile blue A, where its presence is indicated by strong orange fluorescence. The structure, physio-chemical properties, monomer composition and the number and size of the PHA granules vary depending on the organism. GC-MS spectra of the PHA accumulated by various isolates as well as PHA standards confirmed that the polymer produced is mainly PHB except in case of VK-9 in which an additional peak at 5.27 min [24]. Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM) have revealed early granule formation in Waustertiaeutropha H16. Earlier electron microscopy studies of PHB granules from Bacillusmegaterium, Chlorogloeafri focused on various models leading to formation of PHB granules, but no work has been reported on simultaneous qualitative and quantitative estimation of intracellular PHB granule synthesis in Alcaligenessp[25]. PHAs can be observed under phase contrast light microscope, as discrete granules sized between 0.2 to 0.5 μm in diameter which is localized in the cell cytoplasm. Under transmission electron microscopy (TEM), it appears as electron-densed bodies. In terms of molecular weight, PHA can weigh between 2 X 10^5 to 3 X 10^6Daltons[26]. PHB granules isolated from the B.thuringiensis cells observed under scanning electron microscope showed stable spherical configuration with an average diameter of 5 microns. The NMR spectra identified the polymer as an isolatic homopolymer. The spectrum revealed the presence of three groups of signals characteristics of PHB homopolymer. The doublet at 1.3 ppm was attributed to the methyl group coupled to one proton, the doublet of the quartet at 2.57 ppm to the methylene group adjacent to an asymmetric carbon atom bearing a single proton and the multiplet at 5.28 ppm to the methylene group, chloroform gave a chemical shift signal at 7.25 ppm. FTIR analysis revealed two absorption bands at 1280cm^-1 and 1735cm^-1 corresponding to C=O and C-O stretching groups respectively. The gel permeation chromatography (GPC) analysis of the polymer isolated from B.thuringiensis R1 cells revealed that the polydispersity index(Q) [27].

PCR techniques for detection of PHB producers

Colon PCR and semi-nested PCR techniques for screening polyhydroxyalkanoate (PHA) producers, was that isolated from different environments. Three degenerate primers were designed based on multiple sequence alignment results and were used as PCR primers to detect PHA synthase genes. The sensitivity limit of the colony PCR was 1x 10^5 viable cells for Ralstoniaeutropha. The results have suggested the application of this PCR protocol for rapid detection of PHA producers from the environment. The colony PCR to detect the PHA synthase genes from bacterial strains isolated from various ecosystems. For this, they isolated the genomic DNA used as a template. Colony PCR was performed following the procedure of [28]. In each PCR analysis, 30 mg of genomic DNA of Nile red and Nile blue A positive strains and three degenerate primers phacF1, phacF2 and pha-CR4 were used to detect PHA synthase genes. PCR amplified DNA fragments were observed by agarose gel electrophoresis in 1 per cent agarose gel. The amplified DNA fragments were visualized by UV illumination.
Substrates and Growth Conditions for PHB Production

The production of PHB by *Methyllobacterium extorquens* ATCC 55366 using methanol as the sole carbon and energy source in a fed-batch fermentation system. The production of PHB between 40% and 46% on a dry-weight basis was produced by *M. extorquens*. In addition, biomass production and the growth rate of *M. extorquens* were affected by the mineral composition supplied. The absence of (NH4) SO4 or MnSO4 and the absence of a combination of CaCl2, FeSO4, MnSO4 and ZnSO4 had an negative impact on biomass production and the specific growth rate of this bacterial strain. Tested 37 isolates and mutants of *Azotobacter chroococcum* for PHB production using Sudan black B staining method. With 2% glucose and 15 mMol/L ammonium acetate, PHB production was found to be maximum at 36 and 48 hours of growth under submerged cultivation and under stationary cultivation, respectively. They also observed that PHB production was higher on sucrose and commercial sugar compared to glucose and mannitol. Among inorganic nitrogen sources, they found ammonium acetate (15 mMol/L) to be the best for PHB production [23]. PHB production from *Methyllobacterium* SPV-49. They evaluated different carbon sources. Maximum accumulation of PHB was observed with glucose as the carbon source. Methanol and sugars such as sucrose and lactose also induced PHB accumulation. The effect of C:N ratio on polymer accumulation was studied. An organic nitrogen source increased the PHB accumulation rather than inorganic nitrogen sources based on the study on *Bacillus mycoides*. Higher growth of *R. eutropha* ATCC 17697 and *A. latus* ATCC 29712 using organic nitrogen compared to inorganic nitrogen, while there was high PHB production by the strains in media supplemented with ammonium sulphate as nitrogen source. There are many reports to establish the effect of different nitrogen sources on *Bacillus sp.* [29], *Streptomyces sp.* [30], *Rhizobium sp.*, *A. latus* and *R. eutropha*. The PHA production phase, the cell growth is limited owing to the depletion of essential nutrients such as nitrogen, phosphorus, magnesium, among others. This depletion in the presence of excess carbon source triggers the metabolic shift from growth to PHA production phase. *Capriavidus necator* (formerly known as *Wautersia eutropha*, *Ralstonia eutropha* and *Alcaligenes eutrophus*) has been used for optimal production of polyhydroxybutyrate PHB, a homopolymer that is accumulated under nitrogen limitation. *Azotobacter beijerinckii* produces PHA under oxygen limitation compared to nitrogen or phosphorus limitation. A wide variety of PHA copolymers are synthesized in *Bacillus sp.* from fermentation of different carbon sources [31].

Inexpensive Substrates for PHA Production

The production cost of PHB totally depends on the microorganisms, the use of inexpensive substrates, the nutritional and process parameters and the recovery and purification process. Since, carbon source has the major influence over the (PHB) production cost, rummage around for inexpensive carbon sources has become one of the significant research in the PHB production [32]. Agro industrial wastes are attractive candidates since they have some of the desired characteristics namely low prices and high availability. A wide variety of substrates such as whey, lignocellulosic materials and waste water has been used with different microorganisms to improve the yields of PHB production and also to avoid the environmental disposal problems [33]. *Azotobacter chroococcum* MAL-201 accumulated PHB. The polymer yield accounted to 69% of cell dry weight when grown in N2-freestock dale medium containing 2% (w/w) glucose. To make the polymer production cost effective, 12 wastes of different origin were tested for growth and polymer production. The candy factory waste was found to be the most suitable substrate for homopolymer production. The accumulated PHB accounted 17.8% and 40.58% of cell dry weight under single step and two step cultivation conditions, respectively [34]. *Bmegaterium* was grown on various carbon sources such as date syrup and beet molasses [35]. Best results with regard to growth and PHB production were obtained in these cheaper carbon sources. Khardenaviset al (2003) [36] used activated sludge from a food processing industry and waste water from different industries, as substrates for the production of bioplastics. Amongst the different waste water tried, anaerobic treatment waste water gave maximum production of bioplastics followed by deproteinized milk whey and soy whey; thereby achieving twin objectives of effective utilization of available resources for production of value-added products and reduction in cost by solving the problem of waste disposal.

Table 1: PHB (and its copolymers) biosynthesis from inexpensive substrates. The table includes substrate, microorganism and reference

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Substrate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralstonia pickettii 61A6</td>
<td>Sugar cane liquor</td>
<td>[37]</td>
</tr>
<tr>
<td>Bacillus cereus M5</td>
<td>Sugar cane and beet molasses</td>
<td>[13]</td>
</tr>
<tr>
<td>Pseudomonas fluorescens A2a5</td>
<td>Sugarcane waste</td>
<td>[38]</td>
</tr>
<tr>
<td>Organism/Strain</td>
<td>Feedstock</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Azotobacter chroococcum and Recombinant Escherichia coli strain</td>
<td>Starch-based materials</td>
<td>[39]</td>
</tr>
<tr>
<td>Recombinant Escherichia coli</td>
<td>Molasses</td>
<td>[40]</td>
</tr>
<tr>
<td>Burkholderia ipaehaemophilia PT 048 and B. sacchari PT 101</td>
<td>Cellulose hydrolysates, xylose etc</td>
<td>[41]</td>
</tr>
<tr>
<td>Recombinant Escherichia coli</td>
<td>Dairy whey</td>
<td>[42]</td>
</tr>
<tr>
<td>Pseudomonas hydrogenovora</td>
<td></td>
<td>[43]</td>
</tr>
<tr>
<td>Methylobacterium sp. ZP24</td>
<td></td>
<td>[44]</td>
</tr>
<tr>
<td>Bacillus sp. CFR 256</td>
<td>Corn steep liquor</td>
<td>[45]</td>
</tr>
<tr>
<td>Bacillus megaterium ATCC 6748</td>
<td>Corn steep liquor and molasses</td>
<td>[46]</td>
</tr>
<tr>
<td>Cupriavidus necator</td>
<td>Corn syrup</td>
<td>[47]</td>
</tr>
<tr>
<td>Bacillus safensis EBT1</td>
<td>Sugarcane bagasse</td>
<td>[48]</td>
</tr>
<tr>
<td>Cupriavidus sp. USMA2-4</td>
<td>Crude palm kernel oil</td>
<td>[49]</td>
</tr>
<tr>
<td>Ralstonia eutropha</td>
<td>Fatty acids and waste glycerol</td>
<td>[50]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa NCIB 40045</td>
<td></td>
<td>[51]</td>
</tr>
<tr>
<td>Cupriavidus necator</td>
<td></td>
<td>[52]</td>
</tr>
<tr>
<td>Paper mill wastewater</td>
<td>Activated sludge</td>
<td>[53]</td>
</tr>
<tr>
<td>Azotobacter vinelandii UWD</td>
<td>Swine waste liquor</td>
<td>[54]</td>
</tr>
<tr>
<td>Pseudomonas putida CA-3</td>
<td>Petrochemical plastic waste</td>
<td>[55]</td>
</tr>
<tr>
<td>Pseudomonas hydrogenovora</td>
<td>Sunflower cake, soy bran and olive mill</td>
<td>[43]</td>
</tr>
<tr>
<td>Mixed bacteria</td>
<td>Soy and malt wastes</td>
<td>[56]</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>Waste activated sludge</td>
<td>[57]</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>Dairy waste and sea water</td>
<td>[58]</td>
</tr>
<tr>
<td>Pseudomonas putida KT2442</td>
<td>Waste water from olive oil mills (called alpechín)</td>
<td>[59]</td>
</tr>
<tr>
<td>Azotobacter chroococcum H23</td>
<td></td>
<td>[60]</td>
</tr>
<tr>
<td>B. subtilis MSBN17</td>
<td>Tamarind kernel powder</td>
<td>[61]</td>
</tr>
<tr>
<td>Recombinant Bacillus subtilis strains</td>
<td>Acid-hydrolysed malt waste</td>
<td>[62]</td>
</tr>
<tr>
<td>A. australica</td>
<td>Beet molasses, cane molasses maple sap</td>
<td>[63]</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>Groundnut oil cake</td>
<td>[64]</td>
</tr>
<tr>
<td>Pseudomonas putida Bet001</td>
<td>Palm oil mill effluent</td>
<td>[65]</td>
</tr>
</tbody>
</table>

Conclusions

In the recent years, there has been increasing public concern over the harmful effects of petrochemical-derived plastic materials in the environment. Plastics being xenobiotic are recalcitrant to microbial degradation. Excessive molecular size seems to be mainly responsible for the resistance of these chemicals to biodegradation and their persistence in soil for a long time. Nature’s built-in mechanisms and self-regulation ability cannot tackle novel pollutants since these are unfamiliar to it. This has prompted many countries to start developing biodegradable plastic. According to an estimate, more than 100 million tonnes of plastics are produced every year. Several hundred thousand tonnes of plastics are discarded into marine environments every year and accumulate in oceanic regions. Incinerating plastics has been one option in dealing with non-degradable plastics, but other than being expensive it is also dangerous. Harmful chemicals like hydrogen chloride and hydrogen cyanide are released during incineration. Recycling also presents some major disadvantages, as it is difficult sorting the wide variety of plastics and there are also changes in the plastics material such that its further application range is limited. Replacement of non-biodegradable by degradable plastics of major interest both to decision-makers and the plastic industry. Making eco-friendly products such as bioplastics is one such reality that can help us overcome the problem.
of pollution caused by non-degradable plastics. Thus, it becomes inevitable for us to improve upon the method of production, selection of raw materials, recycling, conversion to suitable forms of certain wastes, so that we do not add any material waste into the environment which nature cannot take care of.

REFERENCES

17. Huang, TY., Duan, KJ. & Huang, SY. 2006. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Halofaxammediiteranei, Journal of Microbiology and Biotechnology. 33:701-706.

